Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Res Food Sci ; 8: 100718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545378

RESUMO

Currently, dairy mastitis caused by Staphylococcus xylosus poses a serious challenge for dairy farming. In this study, we explored the role and mechanism of rhein against S. xylosus with the hope of providing new research ideas to solve mastitis in dairy cows and ensure the source safety of dairy products. Through in vitro antimicrobial studies, we found that the minimum inhibitory concentration (MIC) of rhein was 64 µg/mL, and it significantly interfered with the formation of S. xylosus biofilm at sub-MIC. In experiments on mastitis in mice, rhein alleviated inflammation in mammary tissue, reduced the levels of TNF-α and IL-6, and decreased the number of S. xylosus. To explore the anti-S. xylosus mechanism of rhein, we identified the relevant proteins involved in carbon metabolism (Glycolysis/gluconeogenesis, TCA cycle, Fatty acid degradation) through proteomics. Additionally, proteins associated with the respiratory chain, oxidative stress (proteins of antioxidant and DNA repair), and nitrate respiration were also found to be upregulated. Thus, rhein may act as an antibacterial agent by interfering with the respiratory metabolism of S. xylosus and inducing the production of ROS, high levels of which alter the permeability of bacterial cell membranes and cause damage to them. We measured the concentrations of extracellular ß-galactosidase and nucleic acids. Additionally, SEM observation of S. xylosus morphology showed elevated membrane permeability and damage to the cell membrane. Finally, RT-PCR experiments showed that mRNAs of key proteins of the TCA cycle (odhA, mqo) and nitrate respiration (nreB, nreC, narG) were significantly up-regulated, consistent with proteomic results. In conclusion, rhein has good anti-S. xylosus effects in vitro and in vivo, by interfering with bacterial energy metabolism, inducing ROS production, and causing cell membrane and DNA damage, which may be one of the important mechanisms of its antimicrobial activity.

2.
Int J Biol Macromol ; 254(Pt 3): 128066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963503

RESUMO

Staphylococcus aureus (S. aureus) is an important cause of infections associated with implanted medical devices due to the formation of bacterial biofilm, which can prevent the penetration of drugs, thus posing a serious multi-drug resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is one of them. In order to enhance the biofilm elimination effect of Baicalein (BA), a BA-loaded Tyr/HA/CD-CS nano-delivery system was successfully prepared using ß-cyclodextrin grafted with chitosan (CD-CS), Hyaluronic Acid (HA), and D-Tyrosine (D-Tyr). The Tyr/HA/CD-CS-BA-NPs have a uniform particle size distribution with a particle size of 238.1 ± 3.06 nm and a PDI of 0.130 ± 0.02. The NPs showed an obvious inhibitory effect on planktonic bacteria with a MIC of 12.5 µg/mL. In vivo and in vitro tests showed that the NPs could enhance the elimination effect of BA on the MRSA biofilm. The results of Confocal Laser Scanning Microscopy (CLSM), Live & Dead Kit, and colony count experiments illustrated that Tyr/HA/CD-CS-BA-NPs could enhance the permeability of drugs to the biofilm and improve the ability to kill the biofilm bacteria, which may be an important mechanism to enhance the elimination of the MRSA biofilm. These findings will help develop new, effective medicaments for treating bacterial biofilm infections.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Quitosana/farmacologia , Ácido Hialurônico/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
3.
Sci Total Environ ; 905: 167166, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730034

RESUMO

Bisphenol S (BPS), being structurally similar to bisphenol A (BPA), has been widely used as an alternative to BPA in industrial applications. However, in-depth studies on the environmental behavior and fate of BPS in various soils have been rarely reported. Here, 14C-labeled BPS was used to investigate its mineralization, bound residues (BRs) formation and extractable residues (ERs) in three soils for 64 days. Significant differences were found in the dissipation rates of BPS in three soils with different pH values. The dissipation of BPS followed pseudo first-order kinetics with half-lives (T1/2) of 15.2 ± 0.1 d, 27.0 ± 0.2 d, 180.4 ± 5.3 d, and 280.5 ± 3.3 d in the alkaline soil (fluvo-aquic soil, FS), the neutral soil (cinnamon soil, CS), the acidic soil (red soil, RS), and sterilized cinnamon soil (CS-S), respectively. The mineralization and BRs formation contributed the most to the dissipation of BPS in soil. BPS was persistent in acidic soil, and may pose a significant threat to plants grown in acidic soils. Additionally, soil microorganisms played a key role in BPS degradation, and the organic matter content might be a major factor that promotes the adsorption and degradation of BPS in soils. Two transformed products, P-hydroxybenzenesulfonic acid and methylated BPS were identified in soils. This study provides new insights into the fate of BPS in various soils, which will be useful for risk assessments of BPS in soil.

4.
Zhongguo Zhong Yao Za Zhi ; 47(22): 5965-5977, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471922

RESUMO

The blood-brain barrier(BBB), a protective barrier between brain tissues and brain capillaries, can prevent drugs from entering the brain tissues to exert the effect, which greatly increases the difficulty in treating brain diseases. The drug delivery system across the BBB can allow efficient drug delivery across the BBB by virtue of carriers and formulations, thereby enhancing the therapeutic effect of drugs on brain tissue diseases. Liposomes and micelles have been extensively studied with advances in the targeted therapy across the BBB for the brain due to their unique structures and drug delivery advantages. This study summarized the research status of liposome and micelle drug delivery systems across the BBB based on the literature in recent years and analyzed their application advantages and mechanism in terms of trans-BBB capability, targeting, and safety. Moreover, the problems and possible countermeasures in the research on trans-BBB liposomes and micelles were discussed according to the current clinical translation, which may provide refe-rences and ideas for the development of trans-BBB targeted nano-drugs.


Assuntos
Barreira Hematoencefálica , Encefalopatias , Humanos , Lipossomos , Micelas , Sistemas de Liberação de Medicamentos , Transporte Biológico , Encéfalo
5.
Int J Nanomedicine ; 17: 5287-5302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411767

RESUMO

Background and Purpose: Infections caused by Staphylococcus aureus (S. aureus) colonization in medical implants are resistant to antibiotics due to the formation of bacterial biofilm internal. Baicalein (BA) has been confirmed as an inhibitor of bacterial biofilm with less pronounced effects owing to its poor solubility and absorption. Studies have found that ß-cyclodextrin-grafted chitosan (CD-CS) can improve drug efficiency as a drug carrier. Therefore, this research aims to prepare BA-loaded CD-CS nanoparticles (CD-CS-BA-NPs) for S. aureus biofilm elimination enhancement. Methods: CD-CS-BA-NPs were prepared via the ultrasonic method. The NPs were characterized using the X-ray diffraction (XRD), Thermo gravimetric analyzer (TGA), Transmission electron microscopy (TEM) and Malvern Instrument. The minimum inhibitory concentration (MIC) of the NPs were investigated. The biofilm models in vivo and in vitro were constructed to assess the S. aureus biofilm elimination ability of the NPs. The Confocal laser method (CLSM) and the Live/Dead kit were employed to explore the mechanism of the NPs in promoting biofilm elimination. Results: CD-CS-BA-NPs have an average particle size of 424.5 ± 5.16 nm, a PDI of 0.2 ± 0.02, and a Zeta potential of 46.13 ± 1.62 mV. TEM images revealed that the NPs were spherical with uniform distribution. XRD and TGA analysis verified the formation and the thermal stability of the NPs. The NPs with a MIC of 12.5 ug/mL exhibited a better elimination effect on S. aureus biofilm both in vivo and in vitro. The mechanism study demonstrated that the NPs may permeate into the biofilm more easily, thereby improving the biofilm elimination effect of BA. Conclusion: CD-CS-BA-NPs were successfully prepared with enhanced elimination of S. aureus biofilm, which may serve as a reference for future development of anti-biofilm agents.


Assuntos
Quitosana , Nanopartículas , beta-Ciclodextrinas , Quitosana/farmacologia , Staphylococcus aureus
6.
AAPS PharmSciTech ; 23(6): 221, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948815

RESUMO

ß-Cyclodextrin (CD) and chitosan (CS) have attracted great attention due to their unique properties and structures. ß-Cyclodextrin-grafted chitosan (CD-CS) has been widely used as a drug carrier to prepare nano-formulations for drug delivery. However, few researches have been conducted to investigate the effect of CD-CS as an excipient on cellular uptake and intestinal absorption. Herein, Caco-2 cells were used to investigate the influence of CD-CS on cellular uptake. The MTT assay showed that CD-CS was non-toxic to Caco-2 cells in concentrations ranging from 15.62 to 125 µg/mL. Confocal laser microscopy and flow cytometry measurements indicated that the uptake ability of Caco-2 cells was significantly enhanced after being treated with CD-CS at a concentration of 31.25 µg/mL or incubation for 0.5 h, and the uptake enhancement gradually increased with increasing CD-CS concentration and incubation time. The Caco-2 monolayer cell model and the everted intestinal sac method were employed to preliminarily explore the mechanism of the improved intestinal absorption. The results demonstrated that CD-CS might open the tight junctions and enhance the clathrin-dependent endocytosis, macro-pinocytosis, and phagocytosis of the intestinal epithelial cells. Such findings can serve as references and inspiration for the design of absorption enhancers.


Assuntos
Quitosana , beta-Ciclodextrinas , Células CACO-2 , Quitosana/química , Portadores de Fármacos , Humanos , Absorção Intestinal , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
7.
Biol Pharm Bull ; 45(8): 1106-1115, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598976

RESUMO

Andrographolide (AG), a natural product with various pharmacological effects, exhibited low oral bioavailability owing to its poor solubility, stability, and low absorption. Previous studies have suggested that phospholipid (PC) and hydroxypropyl-ß-cyclodextrin (HPCD) could improve the drug solubility and absorption. Moreover, nanoemulsion (NE) has been confirmed as an appropriate enhancer for oral bioavailability. Therefore, AG/HPCD/PC complex (AHPC) was synthesized, and AHPC-loaded nanoemulsion (AHPC-NE) was optimized and prepared using central composite design combined response surface methodology. The average droplet size and polydispersity index (PDI) were 116.50 ± 5.99 and 0.29 ± 0.03 nm, respectively. AHPC-NE with a loading capacity of 0.32 ± 0.01% and an encapsulation efficiency of 96.43 ± 2.27% appeared round and uniformly dispersed based on transmission electron microscopy. In vivo release studies demonstrated that AHPC-NE had good sustained-release effects. Further, AHPC-NE significantly enhanced the absorption of AG with a relative bioavailability of 550.71% compared to AG suspension. Such findings reveal AHPC-NE as a potential strategy for sustained-release and oral bioavailability enhancement.


Assuntos
Ciclodextrinas , Nanopartículas , Administração Oral , Animais , Disponibilidade Biológica , Preparações de Ação Retardada , Diterpenos , Emulsões , Fosfolipídeos , Ratos , Ratos Sprague-Dawley , Solubilidade
8.
J Pharm Sci ; 111(6): 1776-1784, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341722

RESUMO

The clinical applications of paclitaxel (PTX), a natural compound with broad-spectrum antitumor effects, have been markedly limited owing to its poor oral bioavailability and lack of targeting ability. Recently, several drug carriers, such as TPGS2k, gelatin (Gel), cyclodextrin (CD), and hyaluronic acid (HA), have been identified as promising enhancers of drug efficacy. Therefore, Gel-grafted CD (GEL-CD) and HA-grafted CD (HA-CD) were synthesized via grafting, and PTX-loaded TPGS2k/GEL-CD/HA-CD nanoparticles (TGHC-PTX-NPs) were successfully prepared using the ultrasonic crushing method. The mean particles size, polydispersity index, and Zeta potential of TGHC-PTX-NPs were 253.57 ± 2.64 nm, 0.13 ± 0.03, and 0.087 ± 0.005 mV, respectively. TGHC-PTX-NPs with an encapsulation efficiency of 61.77 ± 0.47% and a loading capacity of 6.86 ± 0.32% appeared round and uniformly dispersed based on transmission electron microscopy. In vitro release data revealed that TGHC-PTX-NPs had good sustained-release properties. Further, TGHC-PTX-NPs had increased the targeted uptake by HeLa cells as HA can specifically bind to the CD44 receptor at the cell surface, and its intestinal absorption is related to caveolin-mediated endocytosis. The pharmacokinetic results indicated that TGHC-PTX-NPs significantly enhanced the absorption of PTX in vivo compared to the PTX suspension, with a relative bioavailability of 227.21%. Such findings indicate the potential of TGHC-PTX-NPs for numerous clinical applications.


Assuntos
Ciclodextrinas , Nanopartículas , Disponibilidade Biológica , Linhagem Celular Tumoral , Gelatina , Células HeLa , Humanos , Ácido Hialurônico , Paclitaxel/farmacocinética , Vitamina E
9.
Microb Biotechnol ; 15(2): 535-547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34180582

RESUMO

Staphylococcus xylosus (S. xylosus)-induced cow mastitis is an extremely serious clinical problem. However, antibiotic therapy does not successfully treat S. xylosus infection because these bacteria possess a strong biofilm formation ability, which significantly reduces the efficacy of antibiotic treatments. In this study, we developed ceftiofur-loaded chitosan grafted with ß-cyclodextrins (CD-g-CS) nanoparticles (CT-NPs) using host-guest interaction. These positively charged nanoparticles improved bacterial internalization, thereby significantly improving the effectiveness of antibacterial treatments for planktonic S. xylosus. Moreover, CT-NPs effectively inhibited biofilm formation and eradicated mature biofilms. After mammary injection in a murine model of S. xylosus-induced mastitis, CT-NPs significantly reduced bacterial burden and alleviated inflammation, thereby achieving optimized therapeutic efficiency for S. xylosus infection. In conclusion, this treatment strategy could improve the efficiency of antibiotic therapeutics and shows great potential in the treatment of S. xylosus infections.


Assuntos
Mastite , Nanopartículas , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Bovinos , Feminino , Humanos , Mastite/tratamento farmacológico , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus
10.
J Mol Graph Model ; 99: 107644, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619954

RESUMO

The electronic response of both pristine and Al-doped BC3 nanosheets toward 3, 4-dihydroxyphenyl ethylamine, i.e. dopamine (DA) was studied through density functional theory. Based on the adsorption energy the tendency of pristine BC3 toward DA drug insignificant and also after adsorption of DA drug the electronic properties of BC3 were changed negligibly. While doping the sheet by Al significantly increases its reactivity and sensitivity toward the DA drug. By adsorption of DA HOMO-LUMO gap dramatically decreased of from 1.34 to 1.12 eV, thereby enhancing the electrical conductivity. It indicates that the doped BC3 nanosheets may be a suitable candidate as a DA electronic sensor, unlike the pristine BC3. Furthermore, the work function of doped BC3 was changed significantly after DA adsorption. Based on these results the doped BC3 can also act as a work function-type sensor to the sensing of DA was used. Finally, the most important factor of the doped BC3 sheet is a short recovery time of 7.36 ms for the desorption process of DA.


Assuntos
Grafite , Preparações Farmacêuticas , Boro , Dopamina , Eletrônica
11.
Front Pharmacol ; 11: 612478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542689

RESUMO

Plantago asiatica L. is a natural medicinal plant that has been widely used for its various pharmacological effects such as antidiarrheal, anti-inflammatory, and wound healing. This study aims to explore the antidiarrheal active ingredients of Plantago asiatica L. that can be used as quality markers to evaluate P. asiatica L. superfine powder (PSP). Molecular docking experiment was performed to identify the effective components of P. asiatica L., which were further evaluated by an established mouse diarrhea model. Na+/K+-ATPase and creatine kinase (CK) activities and the Na+/K+ concentrations were determined. The gene expression of ckb and Atp1b3 was detected. PSP was prepared and evaluated in terms of the tap density and the angle of repose. The structures of PSPs of different sizes were measured by infrared spectra. The active ingredient contents of PSPs were determined by HPLC. The results indicated that the main antidiarrheal components of P. asiatica L. were luteolin and scutellarein that could increase the concentration of Na+ and K+ by upregulating the activity and gene level of CK and Na+/K+-ATPase. In addition, luteolin and scutellarein could also decrease the volume and weight of small intestinal contents to exert antidiarrheal activity. Moreover, as the PSP size decreased from 6.66 to 3.55 µm, the powder tended to be amorphous and homogenized and of good fluidity, the content of active compounds gradually increased, and the main structure of the molecule remained steady. The optimum particle size of PSP with the highest content of active components was 3.55 µm, and the lowest effective dose for antidiarrhea was 2,000 mg/kg. Therefore, the antidiarrheal active ingredients of PSP were identified as luteolin and scutellarein that exert antidiarrheal activity by binding with Na+/K+-ATPase. PSP was successfully prepared and could be used as a new dosage form for the diarrhea treatment.

12.
BMC Plant Biol ; 19(1): 487, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711412

RESUMO

BACKGROUND: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. RESULTS: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress conditions from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. CONCLUSIONS: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.


Assuntos
Flavonoides/biossíntese , Luz , Metaboloma/efeitos da radiação , Syringa/metabolismo , Transcriptoma/efeitos da radiação , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Syringa/genética , Syringa/efeitos da radiação
13.
BMC Vet Res ; 15(1): 224, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266490

RESUMO

BACKGROUND: As a kind of opportunist pathogen, Staphylococcus xylosus (S. xylosus) can cause mastitis. Antibiotics are widely used for treating infected animals and tylosin is a member of such group. Thus, the continuous use of antibiotics in dairy livestock enterprise will go a long way in increasing tylosin resistance. However, the mechanism of tylosin-resistant S. xylosus is not clear. Here, isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods was used to find resistance-related proteins. RESULTS: We compared the differential expression of S. xylosus in response to tylosin stress by iTRAQ. A total of 155 proteins (59 up-regulated, 96 down-regulated) with the fold-change of >1.2 or <0.8 (p value ≤0.05) were observed between the S. xylosus treated with 1/2 MIC (0.25 µg/mL) tylosin and the untreated S. xylosus. Bioinformatic analysis revealed that these proteins play important roles in stress-response and transcription. Then, in order to verify the relationship between the above changed proteins and mechanism of tylosin-resistant S. xylosus, we induced the tylosin-resistant S. xylosus, and performed quantitative PCR analysis to verify the changes in the transcription proteins and the stress-response proteins in tylosin-resistant S. xylosus at the mRNA level. The data displayed that ribosomal protein L23 (rplw), thioredoxin(trxA) and Aldehyde dehydrogenase A(aldA-1) are up-regulated in the tylosin-resistant S. xylosus, compared with the tylosin-sensitive strains. CONCLUSION: Our findings demonstrate the important of stress-response and transcription in the tylosin resistance of S. xylosus and provide an insight into the prevention of this resistance, which would aid in finding new medicines .


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteoma/análise , Staphylococcus/efeitos dos fármacos , Tilosina/farmacologia , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/isolamento & purificação , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteômica/métodos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
RSC Adv ; 9(62): 36088-36096, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540619

RESUMO

Syringa oblata Lindl. (S. oblata) is a medicinal plant with effective broad-spectrum antibacterial activity, which can also inhibit Streptococcus suis biofilm formation. The processing of herbal medicine can purify medicinal materials, provide acceptable taste, reduce toxicity, enhance efficacy, influence performance and facilitate preparation. Thus, the aim of this study was to enhance the biofilm inhibition activity of S. oblata toward Staphylococcus xylosus (S. xylosus) using the best processing method. The content of rutin and flavonoids and the ability to inhibit the biofilm formation by S. oblata were examined using four processing methods. One of the best methods, the process of stir-frying S. oblata with vinegar, was optimized based on the best rutin content by response surface methodology. The histidine content and hisB gene expression of S. xylosus biofilm in vitro, resulting from stir-frying S. oblata with vinegar, were evaluated and were found to be significantly decreased and down-regulated, respectively. The results show that S. oblata stir-fried with vinegar can be used to effectively treat diseases resulting from S. xylosus infection. This is because it significantly inhibited S. xylosus biofilm formation by interfering with the biosynthesis of histidine; thus, its mechanism of action is decreasing histidine synthesis.

15.
Front Pharmacol ; 9: 740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042679

RESUMO

Staphylococcus xylosus, a coagulase-negative, non-pathogenic bacterium, responsible for opportunistic infections in humans and bovine mastitis, has the ability to form biofilms, which are responsible for persistent infections and antibiotic resistance. In our study, azithromycin significantly inhibited biofilm formation by altering protein expression. Of the 1764 proteins measured by the isobaric Tag for Relative and Absolute Quantification (iTRAQ) technique, only 148 proteins showed significantly different expression between the azithromycin-treated and untreated cells. Most ribosomal proteins were markedly up-regulated, and the expression of the proteins involved in histidine biosynthesis, which, in turn, influence biofilm formation, was down-regulated, particularly imidazole glycerophosphate dehydratase (IGPD). Previously, we had observed that IGPD plays an important role in biofilm formation by S. xylosus. Therefore, hisB expression was studied by real-time PCR, and the interactions between azithromycin and IGPD were predicted by molecular docking analysis. hisB was found to be significantly down-regulated, and six bond interactions were observed between azithromycin and IGPD. Many active atoms of azithromycin did not interact with the biologically active site of IGPD. Surface plasmon resonance analysis used to further study the relationship between IGPD and azithromycin showed minimum interaction between them. Histidine content in the azithromycin-treated and untreated groups was determined. We noted a slight difference, which was not consistent with the expression of the proteins involved in histidine biosynthesis. Therefore, histidine degradation into glutamate was also studied, and we found that all proteins were down-regulated. This could be the reason why histidine content showed little change between the treated and untreated groups. In summary, we found that azithromycin is a potential inhibitor of S. xylosus biofilm formation, and the underlying mechanism was preliminarily elucidated in this study.

16.
Front Pharmacol ; 9: 570, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922159

RESUMO

Syringa oblata Lindl. (S. oblata) has been used in herbal medicines for treating bacterial diseases. It is also thought to inhibit Streptococcus suis (S. suis) biofilm formation. However, due to the inherent nature of the complexity in its chemical properties, it is difficult to understand the possible bioactive ingredients of S. oblata. The spectrum-effect relationships method was applied to screen the main active ingredients in S. oblata obtained from Heilongjiang Province based on gray relational analysis. The results revealed that Sub-MICs obtained from 10 batches of S. oblata could inhibit biofilm formation by S. suis. Gray relational analysis revealed variations in the contents of 15 main peaks and rutin was discovered to be the main active ingredient. Then, the function of rutin was further verified by inhibiting S. suis biofilm formation using crystal violet staining. Computational studies revealed that rutin may target the chloramphenicol acetyltransferase protein in the biofilm formation of S. suis. In conclusion, this study revealed that the spectrum-effect relationships and computational studies are useful tools to associate the active ingredient with the potential anti-biofilm effects of S. oblata. Here, our findings would provide foundation for the further understanding of the mechanism of S. oblata intervention in biofilm formation.

17.
Front Pharmacol ; 9: 371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713285

RESUMO

Streptococcus suis is difficult to treat and responsible for various infections in humans and pigs. It can also form biofilms and induce persistent infections. Rhizoma Coptidis is a medicinal plant widely used in Traditional Chinese Medicine. Although the inhibitory effects of Rhizoma Coptidis on biofilm formation have been investigated in several studies, the ability of Rhizoma Coptidis to inhibit S. suis biofilm formation and the underlying mechanisms have not yet been reported. In this study, we showed that sub-minimal inhibitory concentrations (25 and 50 µg mL-1) of water extracts of Rhizoma Coptidis (Coptis deltoidea C.Y.Cheng & P.K.Hsiao, obtained from Sichuan Province) were sufficient to inhibit biofilm formation, as shown in the tissue culture plate (TCP) method and scanning electron microscopy. Real-time PCR and iTRAQ were used to measure gene and protein expression in S. suis. Sub-minimum inhibitory concentrations (25 and 50 µg mL-1) of Rhizoma Coptidis water extracts inhibited S. suis adhesion significantly in an anti-adherence assay. Some genes, such as gapdh, sly, and mrp, and proteins, such as antigen-like protein, CPS16V, and methyltransferase H, involved in adhesion were significantly modulated in cells treated with 50 µg mL-1 of Rhizoma Coptidis water extracts compared to untreated cells. The results from this study suggest that compounds in Rhizoma Coptidis water extracts play an important role in inhibiting adhesion of S. suis cells and, therefore, biofilm formation.

18.
Front Microbiol ; 9: 665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675012

RESUMO

Staphylococcus xylosus (S. xylosus) is an AT-rich and coagulase-negative Staphylococcus (CNS). It is normally regarded as non-pathogenic, however, recent studies have demonstrated that it is related to human opportunistic infections and bovine mastitis. In addition, S. xylosus strains have the ability to form biofilm. Biofilms are also involved in chronic infections and antibiotic resistance, there are only a few reports about cefquinome inhibiting S. xylosus biofilm formation and the protein targets of cefquinome. In our study, we found that sub-MICs of cefquinome were sufficient to inhibit biofilm formation. To investigate the potential protein targets of cefquinome, we used iTRAQ for the analyses of cells at two different conditions: 1/2-MIC (0.125 µg/mL) cefquinome treatment and no treatment. Using iTRAQ technique and KEGG database analysis, we found that proteins differently expression in histidine metabolism pathway may play a role in the process by which 1/2-MIC (0.125 µg/mL) cefquinome inhibits S. xylosus biofilm formation. Interestingly, we found a sharply down-regulated enzyme [A0A068E9J3 imidazoleglycerol-phosphate dehydratase (IGPD)] involved in histidine metabolism pathway in cefquinome-treated cells. We demonstrated the important role of IGPD in sub-MICs cefquinome inhibiting biofilm formation of S. xylosus by gene (hisB) knockout, IGPD enzyme activity and histidine content assays. Thus, our data sheds light on important role of histidine metabolism in S. xylosus biofilm formation; especially, IGPD involved in histidine metabolism might play a crucial role in sub-MICs cefquinome inhibition of biofilm formation of S. xylosus, and we propose IGPD as an attractive protein target of cefquinome.

19.
Front Pharmacol ; 9: 227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593544

RESUMO

Biofilm is one of the most important physiological protective barriers of the Streptococcus suis (S. suis), and it is also one of the primary causes of hindrance to drug infiltration, reduction of bactericidal effects, and the development of antibiotic resistance. In order to intervene or eliminate S. suis biofilm, shuttle-shape emodin-loaded nanoparticles were developed in our study. The emodin nanoparticles were prepared by emodin and gelatin-cyclodextrin which was synthesized as drug carrier, and the nanoparticles were 174 nm in size, -4.64 mv in zeta potential, and exhibited a sustained emodin release. Moreover, the delivery kinetics of nanoparticles were also explored in our study. The confocal laser scanning microscopy and colony forming unit enumeration experiment indicated that nanoparticles could increase drug infiltration and uptake by biofilm. The flow cytometry system analysis showed that nanoparticles could be up taken by 99% of the bacteria cells. TCP assay and scanning electron microscopy showed that the nanoparticles had better effect on biofilm inhibition and elimination when compared with emodin solution. These results revealed that the emodin nanoparticles had a better therapeutic effect on the S. suis biofilm in vitro.

20.
Drug Deliv Transl Res ; 8(3): 580-590, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29450806

RESUMO

The aim of the present investigation was to enhance the solubility, dissolution, and oral bioavailability of praziquantel (PZQ), a poorly water-soluble BCS II drug (Biopharmaceutical Classification System), using a solid dispersion (SD) technique involving hydrophilic copolymers. The SD formulations were prepared by a solvent evaporation method with PZQ and PEG 4000 (polyethylene glycol 4000), PEG 6000, or P 188 polymers at various weight ratios or a combination of PEG 4000/P 188. The optimized SD formulation, which had the highest solubility in distilled water, was further characterized by its surface morphology, crystallinity, and dissolution in 0.1 M HCl with 0.2% w/v of sodium dodecyl sulfate (SDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed the amorphous form of PZQ in the SDs. Moreover, at an oral dosage of 5 mg/kg PZQ, the SDs had higher Cmax values and areas under the curve (AUCs) compared to those of commercial PZQ tablets. Preparation of PZQ-loaded SDs using PEG 4000/P 188 is a promising strategy to improve the oral bioavailability of PZQ.


Assuntos
Anti-Helmínticos , Praziquantel , Administração Oral , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/sangue , Anti-Helmínticos/química , Anti-Helmínticos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Cães , Liberação Controlada de Fármacos , Poloxâmero/administração & dosagem , Poloxâmero/química , Poloxâmero/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Praziquantel/administração & dosagem , Praziquantel/sangue , Praziquantel/química , Praziquantel/farmacocinética , Solubilidade , Suspensões , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA