Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Gene ; 862: 147260, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36775217

RESUMO

Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.


Assuntos
Ciclídeos , Pele , Animais , Feminino , Masculino , Pele/metabolismo , Ciclídeos/genética , Vertebrados , Imunoglobulinas/metabolismo , Lactação , Mamíferos
3.
Br J Cancer ; 127(11): 1925-1938, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36088509

RESUMO

BACKGROUND: The E3 ubiquitin ligase HECTD3 is a homologue of the E6-related protein carboxyl terminus, which plays a crucial role in biological processes and tumourigenesis. However, the functional characterisation of HECTD3 in glioblastoma is still elusive. METHODS: Determination of the functional role of HECTD3 in glioblastoma was made by a combination of HECTD3 molecular pattern analysis from human glioblastoma databases and subcutaneous and in situ injections of tumours in mice models. RESULTS: This study reports that the DOC domain of HECTD3 interacts with the DNA binding domain of PARP1, and HECTD3 mediated the K63-linked polyubiquitination of PARP1 and stabilised the latter expression. Moreover, the Cysteine (Cys) 823 (ubiquitin-binding site) mutation of HECTD3 significantly reduced PARP1 polyubiquitination and HECTD3 was involved in the recruitment of ubiquitin-related molecules to PARP1 ubiquitin-binding sites (Lysines 209 and 221, respectively). Lastly, activation of EGFR-mediated signalling pathways by HECTD3 regulates PARP1 polyubiquitination. CONCLUSION: Our results unveil the potential role of HECTD3 in glioblastoma and strongly preconise further investigation and consider HECTD3 as a promising therapeutic marker for glioblastoma treatment.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/genética , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Ubiquitinas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA