Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Brain Pathol ; : e13306, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39293934

RESUMO

Schizophrenia (SZ) is a highly heritable mental disorder, and genome-wide association studies have identified the association between deleted in colorectal cancer (DCC) and SZ. Previous study has shown a lowered expression of DCC in the cerebral cortex of SZ patient. In this study, we identified novel single nucleotide polymorphisms (SNPs) of DCC statistically correlated with SZ. Based on these, we generated DCC conditional knockout (CKO) mice and explored behavioral phenotypes in these mice. We observed that deletion of DCC in cortical layer VI but not layer V led to deficits in fear and spatial memory, as well as defective sensorimotor gating revealed by the prepulse inhibition test (PPI). Critically, the defective sensorimotor gating could be restored by olanzapine, an antipsychotic drug. Furthermore, we found that the levels of p-AKT and p-GSK3α/ß were decreased, which was responsible for impaired PPI in the DCC-deficient mice. Finally, the DCC-deficient mice also displayed reduced spine density of pyramidal neurons and disturbed delta-oscillations. Our data, for the first time, identified and explored downstream substrates and signaling pathway of DCC which supports the hypothesis that DCC is a SZ-related risky gene and when defective, may promote SZ-like pathogenesis and behavioral phenotypes in mice.

2.
Br J Pharmacol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238235

RESUMO

BACKGROUND AND PURPOSE: The emerging antidepressant effects of ketamine have inspired tremendous interest in its underlying neurobiological mechanisms, although the involvement of 5-HT in the antidepressant effects of ketamine remains unclear. EXPERIMENTAL APPROACH: The chronic restraint stress procedure was performed to induce depression-like behaviours in mice. OFT, FST, TST, and NSFT tests were used to evaluate the antidepressant-like effects of ketamine. Tph2 knockout or depletion of 5-HT by PCPA and 5,7-DHT were used to manipulate the brain 5-HT system. ELISA and fibre photometry recordings were used to measure extracellular 5-HT levels in the brain. KEY RESULTS: 60 min after injection, ketamine (10 mg·kg-1, i.p.) produced rapid antidepressant-like effects and increased brain 5-HT levels. After 24 h, ketamine significantly reduced immobility time in TST and FST tests and increased brain 5-HT levels, as measured by ELISA and fibre photometry recordings. The sustained (24 h) but not rapid (60 min) antidepressant-like effects of ketamine were abrogated by PCPA and 5,7-DHT, or by Tph2 knockout. Importantly, NBQX (10 mg·kg-1, i.p.), an AMPA receptor antagonist, significantly inhibited the effect of ketamine on brain 5-HT levels and abolished the sustained antidepressant-like effects of ketamine in naïve or CRS-treated mice. CONCLUSION AND IMPLICATIONS: This study confirms the requirement of serotonergic neurotransmission for the sustained antidepressant-like effects of ketamine, which appears to involve AMPA receptors, and provides avenues to search for antidepressant pharmacological targets.

3.
J Adv Res ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265888

RESUMO

INTRODUCTION: Primary cilia are hair-like solitary organelles growing on most mammalian cells that play fundamental roles in embryonic patterning and organogenesis. Defective cilia often cause a suite of inherited diseases called ciliopathies with multifaceted manifestations. Intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium, actively facilitates the formation and absorption of primary cilia. IFT172 is the largest component of the IFT-B complex, and its roles in Bardet-Biedl Syndrome (BBS) have been appreciated with unclear mechanisms. OBJECTIVES: We performed a battery of behavioral tests with Ift172 haploinsufficiency (Ift172+/-) and WT littermates. We use RNA sequencing to identify the genes and signaling pathways that are differentially expressed and enriched in the hippocampus of Ift172+/- mice. Using AAV-mediated sparse labeling, electron microscopic examination, patch clamp and local field potential recording, western blot, luciferase reporter assay, chromatin immunoprecipitation, and neuropharmacological approach, we investigated the underlying mechanisms for the aberrant phenotypes presented by Ift172+/- mice. RESULTS: Ift172+/- mice displayed excessive self-grooming, elevated anxiety, and impaired cognition. RNA sequencing revealed enrichment of differentially expressed genes in pathways relevant to axonogenesis and synaptic plasticity, which were further confirmed by less spine density and synaptic number. Ift172+/- mice demonstrated fewer parvalbumin-expressing neurons, decreased inhibitory synaptic transmission, augmented theta oscillation, and sharp-wave ripples in the CA1 region. Moreover, Ift172 haploinsufficiency caused less BDNF production and less activated BDNF-TrkB signaling pathway through transcription factor Gli3. Application of 7,8-Dihydroxyflavone, a potent small molecular TrkB agonist, fully restored BDNF-TrkB signaling activity and abnormal behavioral phenotypes presented by Ift172+/- mice. With luciferase and chip assays, we provided further evidence that Gli3 may physically interact with BDNF promoter I and regulate BDNF expression. CONCLUSIONS: Our data suggest that Ift172 per se drives neurotrophic effects and, when defective, could cause neurodevelopmental disorders reminiscent of autism-like disorders.

4.
Cell Death Dis ; 15(5): 343, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760361

RESUMO

The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.


Assuntos
Netrina-1 , Tratos Piramidais , Animais , Camundongos , Axônios/metabolismo , Axônios/patologia , Camundongos Knockout , Netrina-1/metabolismo , Netrina-1/genética , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Movimento/fisiologia
5.
Sci Adv ; 10(6): eadk3931, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324685

RESUMO

Maldevelopment of oligodendroglia underlies neural developmental disorders such as leukodystrophy. Precise regulation of the activity of specific transcription factors (TFs) by various posttranslational modifications (PTMs) is required to ensure proper oligodendroglial development and myelination. However, the role of ubiquitination of these TFs during oligodendroglial development is yet unexplored. Here, we find that RNF220, a known leukodystrophy-related E3 ubiquitin ligase, is required for oligodendroglial development. RNF220 depletion in oligodendrocyte lineage cells impedes oligodendrocyte progenitor cell proliferation, differentiation, and (re)myelination, which consequently leads to learning and memory defects. Mechanistically, RNF220 targets Olig1/2 for K63-linked polyubiquitination and stabilization during oligodendroglial development. Furthermore, in a knock-in mouse model of leukodystrophy-related RNF220R365Q mutation, the ubiquitination and stabilization of Olig proteins are deregulated in oligodendroglial cells. This results in pathomimetic oligodendroglial developmental defects, impaired myelination, and abnormal behaviors. Together, our evidence provides an alternative insight into PTMs of oligodendroglial TFs and how this essential process may be implicated in the etiology of leukodystrophy.


Assuntos
Doenças Desmielinizantes , Neurogênese , Camundongos , Animais , Diferenciação Celular/genética , Ubiquitinação , Oligodendroglia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças Desmielinizantes/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
IBRO Neurosci Rep ; 14: 160-184, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388497

RESUMO

Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.

7.
Cell Death Dis ; 14(5): 309, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149633

RESUMO

To establish functional circuitry, neurons settle down in a particular spatial domain by spacing their cell bodies, which requires proper positioning of the soma and establishing of a zone with unique connections. Deficits in this process are implicated in neurodevelopmental diseases. In this study, we examined the function of EphB6 in the development of cerebral cortex. Overexpression of EphB6 via in utero electroporation results in clumping of cortical neurons, while reducing its expression has no effect. In addition, overexpression of EphrinB2, a ligand of EphB6, also induces soma clumping in the cortex. Unexpectedly, the soma clumping phenotypes disappear when both of them are overexpressed in cortical neurons. The mutual inhibitory effect of EphB6/ EphrinB2 on preventing soma clumping is likely to be achieved via interaction of their specific domains. Thus, our results reveal a combinational role of EphrinB2/EphB6 overexpression in controlling soma spacing in cortical development.


Assuntos
Efrina-B2 , Receptor EphB6 , Receptor EphB6/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Corpo Celular/metabolismo , Neurônios/metabolismo
8.
Neural Regen Res ; 18(7): 1521-1526, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571357

RESUMO

The adult cortex has long been regarded as non-neurogenic. Whether injury can induce neurogenesis in the adult cortex is still controversial. Here, we report that focal ischemia stimulates a transient wave of local neurogenesis. Using 5'-bromo-2'-deoxyuridine labeling, we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia. Nestin-CreER-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells. Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling, we observed maturation of locally generated new neurons. Furthermore, fate tracing analyses using PDGFRα-, GFAP-, and Sox2-CreER mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex. In addition, a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta. Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex, which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.

9.
Environ Geochem Health ; 45(5): 2387-2400, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35972609

RESUMO

The association between exposure to particulate matter (PM) during pregnancy and abnormal birth outcomes is still inconclusive. This study aims to provide more evidence for this public health concern by investigating birth outcomes and the growth of offspring in mice exposed to PM during pregnancy. C57BL/6 J pregnant mice were exposed to PM via nasal drip at three doses or solvent control. The dam weight gain was recorded during pregnancy. The number of pups, pup weight, and placental weight were recorded at embryonic day 18.5 (E18.5) necropsy. For mice that gave birth naturally, we calculated the gestation length and measured the body weight of offspring once a week from the 1st to the 6th week after birth. The results showed that there were no significant differences in maternal body weight gain, conception rate, pregnancy duration, and litter size among different groups. There were no significant differences in fetal weight, placental weight, and fetal/placental weight ratio at E18.5. Weight gain in offspring was reduced after birth. The average body weight of offspring in the high-dose group was significantly lower than that in the control group at weeks 5 in female pups. There were no significant differences in the body weight of male offspring among groups from 1st to the 6th. Together, our study indicated that maternal exposure to PM did not significantly impact birth outcomes of C57BL/6 J mice but affected growth trajectories in offspring after birth in a dose- and fetal sex-dependent manner.


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Camundongos , Masculino , Animais , Exposição Materna/efeitos adversos , Material Particulado/toxicidade , Placenta , Camundongos Endogâmicos C57BL , Aumento de Peso , Peso ao Nascer
11.
NPJ Regen Med ; 7(1): 42, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056026

RESUMO

Reactive astrogliosis usually bears some properties of neural progenitors. How injury triggers astrocyte dedifferentiation remains largely unclear. Here, we report that ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons and activation of canonical Wnt signaling in reactive astrocytes in mice, primates and human. Local delivery of Wnt2 shRNA abolished the dedifferentiation of astrocytes while over-expressing Wnt2 promoted progenitor marker expression and neurogenesis. Both the activation of Wnt signaling and dedifferentiation of astrocytes was compromised in ischemic caspase-3-/- cortex. Over-expressing stabilized ß-catenin not only facilitated neurogenesis but also promoted functional recovery in ischemic caspase-3-/- mice. Further analysis showed that apoptotic neurons up-regulated Wnt2 protein via internal ribosome entry site (IRES)-mediated translation. Knocking down death associated protein 5 (DAP5), a key protein in IRES-mediated protein translation, significantly diminished Wnt activation and astrocyte dedifferentiation. Our data demonstrated an apoptosis-initiated Wnt-activating mechanism which triggers astrocytic dedifferentiation and facilitates neuronal regeneration.

12.
Sci Adv ; 8(39): eabq4736, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179027

RESUMO

The accurate expression of postsynaptic AMPA receptors (AMPARs) is critical for information processing in the brain, and ubiquitination is a key regulator for this biological process. However, the roles of E3 ubiquitin ligases in the regulation of AMPARs are poorly understood. Here, we find that RNF220 directly interacts with AMPARs to meditate their polyubiquitination, and RNF220 knockout specifically increases AMPAR protein levels, thereby enhancing basal synaptic activity while impairing synaptic plasticity. Moreover, depending on its E3 ubiquitin ligase activity, RNF220 represses AMPAR-mediated excitatory synaptic responses and their neuronal surface expression. Furthermore, learning and memory are altered in forebrain RNF220-deficient mice. In addition, two neuropathology-related RNF220 variants fail to repress excitatory synaptic activity because of the incapability to regulate AMPAR ubiquitination due to their attenuated interaction. Together, we identify RNF220 as an E3 ubiquitin ligase for AMPARs and establish its substantial role in excitatory synaptic transmission and brain function.

13.
Nucleic Acids Res ; 50(16): 9319-9338, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029179

RESUMO

Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.


Assuntos
Células-Tronco Adultas , DNA Topoisomerases Tipo II , Enzimas Desubiquitinantes , Células-Tronco Neurais , Neurogênese , Animais , Camundongos , Células-Tronco Adultas/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Ativação Transcricional/genética
14.
Toxicology ; 474: 153225, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35659516

RESUMO

It is well understood that exposure to particulate matter (PM) can have adverse effects on the nervous system. When pregnant women are exposed to PM, their fetuses are also affected through the placenta. However, the mechanisms by which fetal brain development is regulated between mother and fetus remain unclear. C57BL/6J pregnant mice were exposed to PM at embryonic day (E) 2.5, 5.5, 8.5, 11.5, 14.5, and 17.5 via nasal drip at three doses (3, 6, 12 mg/kg of body weight) or PBS control. Neurobehavioral changes in the offspring were examined at 5-6-week-old by open field test (OFT) and elevated plus maze (EPM). The maternal and fetal brain and placenta were collected at E18.5, and molecular signal changes were explored using transcriptome analysis. We found that both male and female low-dose pups and male middle-dose pups traveled a significantly longer distance than controls in EPM tests. Both male and female low-dose pups showed a higher frequency of entering the center area and female low-dose pups exhibited a higher percentage of distance moved in the center area than controls in OFT tests. Gene expression in the maternal brain, fetal brain, and placenta at E18.5 was altered. Differentially expressed genes were enriched in the neuroactive ligand-receptor interaction pathway in all three tissue types. Pathway analysis revealed that the PI3K-Akt and PKC signaling was dysregulated in the fetal brain in the high-dose group compared with the control group. The pathways play a role in neuronal survival and apoptosis. Furthermore, there is a dose-dependent increase in Caspase-6, neuronal apoptosis and neurodegeneration biomarker, levels in E18.5 fetal brain (P = 0.06). In conclusion, our study demonstrated that prenatal PM exposure enhanced exploration and locomotor activity in adolescent offspring and altered molecular events in maternal brain, fetal brain, and placenta. The connections of these changes warrant further investigations.


Assuntos
Material Particulado , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Desenvolvimento Fetal/fisiologia , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Eur J Neurosci ; 56(2): 3839-3860, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661443

RESUMO

Although Notch signalling pathway could control the proliferation and differentiation of neural stem cells (NSCs), it is largely unknown about the effect of Notch signalling pathway on the neurogenesis of CD133-positive cells. By using the primary cultured ependymal cells and the transgenic mouse, we found that CD133 immunoreactivity was exclusively localized in the ependymal layer of ventricles; moreover, most CD133-positive cells were co-labelled with Nestin. In addition, recombination signal binding protein J (RBP-J), a key nuclear effector of Notch signalling pathway, was highly active in CD133-positive cells. CD133-positive cells can differentiate into the immature and mature neurons; in particular, the number of CD133-positive cells differentiating into the immature and mature neurons was significantly increased following the deficiency or interference of RBP-J in vivo or in vitro. By using real-time qPCR and Western blot, we found that RBP-J and Hes1 were downregulated, whereas Notch1 was upregulated in the expression levels of mRNAs and proteins following the deficiency or interference of RBP-J. These results demonstrated RBP-J deficiency promoted the proliferation and differentiation of CD133-positive cells. Therefore, we speculated that RBP-J could maintain CD133-positive cells in the characteristics of NSCs possibly by regulating Notch1/RBP-J/Hes1 pathway. It will provide a novel molecular insight into the function of RBP-J as well as facilitate a future investigation of CD133-positive cells with respect to their potential application in neurodegenerative disorder.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Células-Tronco Neurais , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia
16.
Schizophr Bull ; 48(4): 804-813, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35522199

RESUMO

OBJECTIVES: Despite of strenuous research in the past decades, the etiology of schizophrenia (SCZ) still remains incredibly controversial. Previous genetic analysis has uncovered a close association of Unc-51 like kinase 4 (ULK4), a family member of Unc-51-like serine/threonine kinase, with SCZ. However, animal behavior data which may connect Ulk4 deficiency with psychiatric disorders, particularly SCZ are still missing. METHODS: We generated Emx1-Cre:Ulk4flox/flox conditional knockout (CKO) mice, in which Ulk4 was deleted in the excitatory neurons of cerebral cortex and hippocampus. RESULTS: The cerebral cellular architecture was maintained but the spine density of pyramidal neurons was reduced in Ulk4 CKO mice. CKO mice showed deficits in the spatial and working memories and sensorimotor gating. Levels of p-Akt and p-GSK-3α/ß were markedly reduced in the CKO mice indicating an elevation of GSK-3 signaling. Mechanistically, Ulk4 may regulate the GSK-3 signaling via putative protein complex comprising of two phosphatases, protein phosphatase 2A (PP2A) and 1α (PP1α). Indeed, the reduction of p-Akt and p-GSK-3α/ß was rescued by administration of inhibitor acting on PP2A and PP1α in CKO mice. CONCLUSIONS: Our data identified potential downstream signaling pathway of Ulk4, which plays important roles in the cognitive functions and when defective, may promote SCZ-like pathogenesis and behavioral phenotypes in mice.


Assuntos
Proteínas Serina-Treonina Quinases , Esquizofrenia , Animais , Cognição , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Transdução de Sinais
17.
Cell Rep ; 39(3): 110724, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443189

RESUMO

PTEN is known as a tumor suppressor and plays essential roles in brain development. Here, we report that PTEN in primary sensory neurons is involved in processing itch and thermal information in adult mice. Deletion of PTEN in the dorsal root ganglia (DRG) is achieved in adult Drg11-CreER: PTENflox/flox (PTEN CKO) mice with oral administration of tamoxifen, and CKO mice develop pathological itch and elevated itch responses on exposure to various pruritogens. PTEN deletion leads to ectopic expression of TRPV1 and MrgprA3 in IB4+ non-peptidergic DRG neurons, and the TRPV1 is responsive to capsaicin. Importantly, the elevated itch responses are no longer present in Drg11-CreER: PTENflox/flox: TRPV1flox/flox (PTEN: TRPV1 dCKO) mice. In addition, thermal stimulation is enhanced in PTEN CKO mice but blunted in dCKO mice. PTEN-involved regulation of itch-related gene expression in DRG neurons provides insights for understanding molecular mechanism of itch and thermal sensation at the spinal level.


Assuntos
Prurido , Canais de Cátion TRPV , Animais , Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prurido/patologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
18.
Front Cell Dev Biol ; 10: 831365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399523

RESUMO

Rnf220 is reported to regulate the patterning of the ventral spinal neural tube in mice. The brainstem has divergent connections with peripheral and central targets and contains unique internal neuronal groups, but the role of Rnf220 in the early development of the hindbrain has not been explored. In this study, Nestin-Cre-mediated conditional knockout (Rnf220 Nestin CKO) mice were used to examine if Rnf220 is involved in the early morphogenesis of the hindbrain. Rnf220 showed restricted expression in the ventral half of ventricular zone (VZ) of the hindbrain at embryonic day (E) 10.5, and as development progressed, Rnf220-expressing cells were also present in the mantle zone outside the VZ at E12.5. In Rnf220 Nestin CKO embryos, alterations of progenitor domains in the ventral VZ were observed at E10.5. There were significant reductions of the p1 and p2 domains shown by expression of Dbx1, Olig2, and Nkx6.1, accompanied by a ventral expansion of the Dbx1+ p0 domain and a dorsal expansion of the Nkx2.2+ p3 domain. Different from the case in the spinal cord, the Olig2+ pMN (progenitors of somatic motor neuron) domain shifted and expanded dorsally. Notably, the total range of the ventral VZ and the extent of the dorsal tube were unchanged. In addition, the post-mitotic cells derived from their corresponding progenitor domain, including oligodendrocyte precursor cells (OPCs) and serotonergic neurons (5-HTNs), were also changed in the same trend as the progenitor domains do in the CKO embryos at E12.5. In summary, our data suggest similar functions of Rnf220 in the hindbrain dorsoventral (DV) patterning as in the spinal cord with different effects on the pMN domain. Our work also reveals novel roles of Rnf220 in the development of 5-HTNs and OPCs.

19.
Environ Sci Pollut Res Int ; 29(41): 62626-62636, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35411516

RESUMO

The presence of negative air ions (NAI) is suggested to be a beneficial factor in improving psychological status and used in treating depression as an alternative approach. However, more biological evidence from animal models is needed to ensure the effects of NAI on the mood regulation, through which can facilitate identification of possible underlying mechanisms. In this study, the chronic mild stress (CMS) protocol was used to induce depressive-like behaviors in mice, and the effects of NAI exposure on CMS-induced depression-like behaviors were examined. Thirty-day NAI exposure prevented the CMS-induced depression-like behaviors as shown by the restoration of sucrose preference and reduced immobility time in the tail suspension test. In addition, the elevation of serous corticosterone was present in CMS-treated mice but not existed in those with the NAI exposure. Furthermore, we observed altered ratios of some cytokines secreted by type 1 T helper (Th1) cells and Th2 cells in CMS-treated mice, but it could be restored after NAI exposure. In conclusion, NAI intervention is able to ameliorate CMS-induced depression-like behaviors in mice, and this effect is associated with the alteration of corticosterone and functional rebalance between Th1 and Th2 cells.


Assuntos
Corticosterona , Depressão , Animais , Comportamento Animal , Corticosterona/farmacologia , Modelos Animais de Doenças , Íons , Camundongos , Estresse Psicológico/complicações , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA