Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Int ; 185: 108510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460241

RESUMO

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
2.
J Hazard Mater ; 448: 130872, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716558

RESUMO

Atmospheric particulate matter (PM) is one of the major risks for global health. The exact mechanisms of toxicity are still not completely understood leading to contrasting results when different toxicity metrics are compared. In this work, PM10 was collected at three sites for the determination of acellular oxidative potential (OP), intracellular oxidative stress (OSGC), cytotoxicity (MTT assay), and genotoxicity (Comet assay). The in vitro tests were done on the A549 cell line. The objective was to investigate the correlations among acellular and intracellular toxicity indicators, the variability among the sites, and how these correlations were influenced by the main sources by using PMF receptor model coupled with MLR. The OPDTTV, OSGCV, and cytotoxicity were strongly influenced by combustion sources. Advection of African dust led to lower-than-average intrinsic toxicity indicators. OPDTTV and OSGCV showed site-dependent correlations suggesting that acellular OP may not be fully representative of the intracellular oxidative stress at all sites and conditions. Cytotoxicity correlated with both OPDTTV and OSGCV at two sites out of three and the strength of the correlation was larger with OSGCV. Genotoxicity was correlated with cytotoxicity at all sites and correlated with both, OPDTTV and OSGCV, at two sites out of three. Results suggest that several toxicity indicators are useful to gain a global picture of the potential health effects of PM.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poeira , Estresse Oxidativo
3.
Atmos Environ (1994) ; 295: 119559, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36569029

RESUMO

Many countries imposed lockdown (LD) to limit the spread of COVID-19, which led to a reduction in the emission of anthropogenic atmospheric pollutants. Several studies have investigated the effects of LD on air quality, mostly in urban settings and criteria pollutants. However, less information is available on background sites, and virtually no information is available on particle number size distribution (PNSD). This study investigated the effect of LD on air quality at an urban background site representing a near coast area in the central Mediterranean. The analysis focused on equivalent black carbon (eBC), particle mass concentrations in different size fractions: PM2.5 (aerodynamic diameter Da < 2.5 µm), PM10 (Da < 10 µm), PM10-2.5 (2.5 < Da < 10 µm); and PNSD in a wide range of diameters (0.01-10 µm). Measurements in 2020 during the national LD in Italy and period immediately after LD (POST-LD period) were compared with those in the corresponding periods from 2015 to 2019. The results showed that LD reduced the frequency and intensity of high-pollution events. Reductions were more relevant during POST-LD than during LD period for all variables, except quasi-ultrafine particles and PM10-2.5. Two events of long-range transport of dust were observed, which need to be identified and removed to determine the effect of LD. The decreases in the quasi-ultrafine particles and eBC concentrations were 20%, and 15-22%, respectively. PM2.5 concentration was reduced by 13-44% whereas PM10-2.5 concentration was unaffected. The concentration of accumulation mode particles followed the behaviour of PM2.5, with reductions of 19-57%. The results obtained could be relevant for future strategies aimed at improving air quality and understanding the processes that influence the number and mass particle size distributions.

4.
J Environ Manage ; 319: 115752, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35982560

RESUMO

Airborne particulate matter (PM) is studied because of its effects on human health and climate change. PM long-term characterisation allows identifying trends and evaluating the outcomes of environmental protection policies. This work is aimed to study the inter-annual variability of PM2.5 and PM10 concentrations and chemical composition in an urban background site (Italy). A dataset of daily PM2.5 and PM10 was collected in the period 2016-2017, including the content of OC, EC, major water-soluble ions, main metals, and compared to a similar dataset collected in the period 2013-2014. Oxidative potential using DTT assay (dithiothreitol) was evaluated and expressed in DTTV as 0.39 nmol/min·m3 in PM10 and 0.29 in PM2.5 nmol/min·m3. PM source apportionment was computed using the EPA PMF5.0 model and source contributions compared with those of a previous dataset collected between 2013 and 2014. Multi linear regression analysis identified which source contributed (p < 0.05) to the oxidative potential of each size fraction. Inter-annual trends were more evident on PM2.5 with reductions of biomass burning contribution and increases in traffic contribution in the 2016-2017 period. Crustal contributions were similar for the two periods, in both size fractions. Carbonates were comparable in PM10 with a slight increase in PM2.5. Sea spray decreased in PM10. The DTTV of PM2.5 peaked during cold periods, while, the DTTV of the PM10-2.5 fraction peaked in summer, suggesting that different sources, with different seasonality, influence OP in the PM2.5 and PM10-2.5 fractions. Analysis showed that sea spray, crustal, and carbonates sources contribute ∼13.6% to DTTV in PM2.5 and ∼62.4% to DTTV in PM10-2.5. Combustion sources (biomass burning and traffic) contribute to the majority of DTTV (50.6%) in PM2.5 and contribute for ∼26% to DTTV in PM10-2.5. Secondary nitrate contributes to DTTV in both fine and coarse fraction; secondary sulphate contribute to DTTV in PM2.5 with negligible contributions to DTTV in PM10-2.5.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
5.
Environ Sci Pollut Res Int ; 29(12): 17723-17736, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34676477

RESUMO

A chemical characterization of PM10 collected at hydrofoil exhaust stacks was performed conducting two on-board measuring campaigns, with the aim of assessing the ship emission impact on PM10 collected in the coastal area of Naples (Southern Italy) and providing information about the characteristics of this important PM emission source.Samples were analysed determining the contribution of different chemical parameters to PM10's mass, which consisted of polycyclic aromatic hydrocarbons (PAHs) (0.10 ± 0.12%), total carbon (61.9% ± 20.0%, with 40.4% of organic carbon, OC, and 21.5% of elemental carbon, EC) and elemental fraction (0.44% ± 1.00%). Differences in terms of composition and chemical parameter profiles were observed between samples collected during offshore navigation (Off) and samples collected during shunting operations (SO), the latter of higher concern on a local scale. For SO samples, lower contributions of OC and EC were observed (39.7% and 19.6% respectively) compared to Off samples (41.5% and 24.2%), and an increase in terms of elements (from 0.32 to 0.51%) and PAHs (from 0.06 to 0.12%) concentrations was observed. In addition, enrichment factors (EFs) for some elements such as V, Zn, Cd, Cu, Ag and Hg as well as PAHs profile varied significantly between SO and Off. Data presented here were compared with data on chemical composition of PM10 sampled in a tunnel, in a background site and in an urban site in the city of Naples. Results indicated that shipping activities contributed significantly to the emission of V and, in some extent, Zn and Cd; in addition, PAH profiles indicated a greater contribution to urban PM10 from vehicular traffic than shipping emissions. These results can significantly contribute to the correct evaluation of the influence of shipping emission on PM10 generation in urban coastal areas and can be a useful reference for similar studies. The coastal area of Naples is an important example of the coexistence of residential, touristic and natural areas with pollutants emission sources including, among the others, shipping emissions. In this and similar contexts, it is important to distinguish the contribution of each emission source to clearly define environmental control policies.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Navios , Emissões de Veículos/análise
6.
Environ Sci Pollut Res Int ; 29(10): 13905-13916, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34599449

RESUMO

COVID-19 pandemic raised a debate regarding the role of airborne transmission. Information regarding virus-laden aerosol concentrations is still scarce in community indoors and what are the risks for general public and the efficiency of restriction policies. This work investigates, for the first time in Italy, the presence of SARS-CoV-2 RNA in air samples collected in different community indoors (one train station, two food markets, one canteen, one shopping centre, one hair salon, and one pharmacy) in three Italian cities: metropolitan city of Venice (NE of Italy), Bologna (central Italy), and Lecce (SE of Italy). Air samples were collected during the maximum spread of the second wave of pandemic in Italy (November and December 2020). All collected samples tested negative for the presence of SARS-CoV-2, using both real-time RT-PCR and ddPCR, and no significant differences were observed comparing samples taken with and without customers. Modelling average concentrations, using influx of customers' data and local epidemiological information, indicated low values (i.e. < 0.8 copies m-3 when cotton facemasks are used and even lower for surgical facemasks). The results, even if with some limitations, suggest that the restrictive policies enforced could effectively reduce the risk of airborne transmissions in the community indoor investigated, providing that physical distance is respected.


Assuntos
Microbiologia do Ar , COVID-19 , Pandemias , SARS-CoV-2/isolamento & purificação , Humanos , Itália , RNA Viral
7.
Sci Total Environ ; 809: 151137, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699823

RESUMO

Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis , Humanos , Pandemias , RNA Viral , SARS-CoV-2
8.
Environ Sci Pollut Res Int ; 26(28): 29334-29350, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396867

RESUMO

Scientific interest is focusing on different approaches for characterising organic carbon (OC), elemental carbon (EC) and equivalent black carbon (eBC), although EUSAAR2 protocol has been established and frequently used in EU for regulatory purposes. Discrepancies are observed due to thermal protocols used for OC/EC determinations and the effect of the chemical-physical properties of aerosol using optical measurements for eBC. In this work, a long-term inter-comparison of carbon measurements with two widely used protocols (EUSAAR2 and NIOSH870) was performed on PM2.5 and PM10 samples. The influence of the protocol on the evaluation of secondary organic aerosol (SOC) and on the correlation between EC and eBC was investigated. An extensive check of repeatability gave typical uncertainties of ~ 5% for TC and OC, and ~ 10% for EC for both thermal protocols. Results show that OC is statistically comparable between the two protocols but EC is significantly higher with EUSAAR2, especially during the warm season. The ratio OC/EC is lower with EUSAAR2, also showing a seasonality (lower values in the warm season) not observed with NIOSH870. Despite the differences in OC/EC ratios, the contribution of SOC to OC (~ 50%), evaluated using the EC-tracer method, did not differ significantly between the two protocols and for both size fractions. Further, SOC/OC ratios were comparable in cold and warm periods. eBC/EC ratios larger than one for both protocols were obtained, 1.62 (EUSAAR2) and 1.92 (NIOSH870), and also correlated with the ratio OC/EC for both protocols, especially in the cold season.


Assuntos
Aerossóis/análise , Carbono/análise , Material Particulado/análise , Fuligem/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Carbono/química , Tamanho da Partícula , Estações do Ano , Fuligem/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA