Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 9: 222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593543

RESUMO

Trace amine-associated receptors (TAARs) belong to the class A G-protein-coupled receptors (GPCR) and are evolutionary related to aminergic receptors. TAARs have been identified to mediate effects of trace amines. TAAR1 signaling is mainly mediated via activation of the Gs/adenylyl cyclase pathway. In addition to classical trace amines, TAAR1 can also be activated by the thyroid hormone derivative 3-iodothyronamine (3-T1AM). Pharmacological doses of 3-T1AM induced metabolic and anapyrexic effects, which might be centrally mediated in the hypothalamus in rodents. However, the observed anapyrexic effect of 3-T1AM persists in Taar1 knock-out mice which raises the question whether further GPCRs are potential targets for 3-T1AM and mediate the observed physiological effect. Anapyrexia has been observed to be related to action on aminergic receptors such as the serotonin receptor 1b (5-HT1b). This receptor primarily activates the Gi/o mediated pathway and PLC signaling through the Gßγ of Gi/o. Since the expression profiles of TAAR1 and 5-HT1b overlap, we questioned whether 3-T1AM may activate 5-HT1b. Finally, we also evaluated heteromerization between these two GPCRs and tested signaling under co-expressed conditions. In this study, we showed, that 3-T1AM can induce Gi/o signaling through 5-HT1b in a concentration of 10 µM. Strikingly, at 5-HT1b the ligand 3-T1AM only activates the Gi/o mediated reduction of cAMP accumulation, but not PLC activation. Co-stimulation of 5-HT1b by both ligands did not lead to additive or synergistic signaling effects. In addition, we confirmed the capacity for heteromerization between TAAR1 and 5-HT1b. Under co-expression of TAAR1 and HTR1b, 3-T1AM action is only mediated via TAAR1 and activation of 5-HT1b is abrogated. In conclusion, we found evidence for 5-HT1b as a new receptor target for 3-T1AM, albeit with a different signaling effect than the endogenous ligand. Altogether, this indicates a complex interrelation of signaling effects between the investigated GPCRs and respective ligands.

2.
Front Pharmacol ; 8: 807, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225575

RESUMO

Activation of trace amine-associated receptor 1 (TAAR1) in endocrine pancreas is involved in weight regulation and glucose homeostasis. The purpose of this study was the identification and characterization of potential TAAR1 variants in patients with overweight/obesity and disturbed glucose homeostasis. Screening for TAAR1 variants was performed in 314 obese or overweight patients with impaired insulin secretion. The detected variants were functionally characterized concerning TAAR1 cell surface expression and signaling properties and their allele frequencies were determined in the population-based Study of Health in Pomerania (SHIP). Three heterozygous carriers of the single nucleotide missense variants p.Arg23Cys (R23C, rs8192618), p.Ser49Leu (S49L, rs140960896), and p.Ille171Leu (I171L, rs200795344) were detected in the patient cohort. While p.Ser49Leu and p.Ille171Leu were found in obese/overweight patients with slightly impaired glucose homeostasis, p.Arg23Cys was identified in a patient with a complete loss of insulin production. Functional in vitro characterization revealed a like wild-type function for I171L, partial loss of function for S49L and a complete loss of function for R23C. The frequency of the R23C variant in 2018 non-diabetic control individuals aged 60 years and older in the general population-based SHIP cohort was lower than in the analyzed patient sample. Both variants are rare in the general population indicating a recent origin in the general gene pool and/or the consequence of pronounced purifying selection, in line with the obvious detrimental effect of the mutations. In conclusion, our study provides hints for the existence of naturally occurring TAAR1 variants with potential relevance for weight regulation and glucose homeostasis.

3.
Eur Thyroid J ; 4(Suppl 1): 21-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601070

RESUMO

BACKGROUND: 3-Iodothyronamine (3-T1AM), a signaling molecule with structural similarities to thyroid hormones, induces numerous physiological responses including reversible body temperature decline. One target of 3-T1AM is the trace amine-associated receptor 1 (TAAR1), which is a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). Interestingly, the effects of 3-T1AM remain detectable in TAAR1 knockout mice, suggesting further targets for 3-T1AM such as adrenergic receptors. Therefore, we evaluated whether ß-adrenergic receptor 1 (ADRB1) and 2 (ADRB2) signaling is affected by 3-T1AM in HEK293 cells and in human conjunctival epithelial cells (IOBA-NHC), where these receptors are highly expressed endogenously. METHODS: A label-free EPIC system for prescreening the 3-T1AM-induced effects on ADRB1 and ADRB2 in transfected HEK293 cells was used. In addition, ADRB1 and ADRB2 activation was analyzed using a cyclic AMP assay and a MAPK reporter gene assay. Finally, fluorescence Ca(2+) imaging was utilized to delineate 3-T1AM-induced Ca(2+) signaling. RESULTS: 3-T1AM (10(-5)-10(-10)M) enhanced isoprenaline-induced ADRB2-mediated Gs signaling but not that of ADRB1-mediated signaling. MAPK signaling remained unaffected for both receptors. In IOBA-NHC cells, norepinephrine-induced Ca(2+) influxes were blocked by the nonselective ADRB blocker timolol (10 µM), indicating that ADRBs are most likely linked with Ca(2+) channels. Notably, timolol was also found to block 3-T1AM (10(-5)M)-induced Ca(2+) influx. CONCLUSIONS: The presented data support that 3-T1AM directly modulates ß-adrenergic receptor signaling. The relationship between 3-T1AM and ß-adrenergic signaling also reveals a potential therapeutic value for suppressing Ca(2+) channel-mediated inflammation processes, occurring in eye diseases such as conjunctivitis.

4.
J Mol Endocrinol ; 54(3): 205-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25878061

RESUMO

Most in vivo effects of 3-iodothyronamine (3-T1AM) have been thus far thought to be mediated by binding at the trace amine-associated receptor 1 (TAAR1). Inconsistently, the 3-T1AM-induced hypothermic effect still persists in Taar1 knockout mice, which suggests additional receptor targets. In support of this general assumption, it has previously been reported that 3-T1AM also binds to the α-2A-adrenergic receptor (ADRA2A), which modulates insulin secretion. However, the mechanism of this effect remains unclear. We tested two different scenarios that may explain the effect: the sole action of 3-T1AM at ADRA2A and a combined action of 3-T1AM at ADRA2A and TAAR1, which is also expressed in pancreatic islets. We first investigated a potential general signaling modification using the label-free EPIC technology and then specified changes in signaling by cAMP inhibition and MAPKs (ERK1/2) determination. We found that 3-T1AM induced Gi/o activation at ADRA2A and reduced the norepinephrine (NorEpi)-induced MAPK activation. Interestingly, in ADRA2A/TAAR1 hetero-oligomers, application of NorEpi resulted in uncoupling of the Gi/o signaling pathway, but it did not affect MAPK activation. However, 3-T1AM application in mice over a period of 6 days at a daily dose of 5 mg/kg had no significant effects on glucose homeostasis. In summary, we report an agonistic effect of 3-T1AM on the ADRA2A-mediated Gi/o pathway but an antagonistic effect on MAPK induced by NorEpi. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate Gi/o signaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Receptores Adrenérgicos alfa 2/metabolismo , Tironinas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Glucose/metabolismo , Células HEK293 , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Norepinefrina/antagonistas & inibidores , Norepinefrina/farmacologia , Receptores Adrenérgicos alfa 2/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
PLoS One ; 10(2): e0117774, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706283

RESUMO

OBJECTIVE: Application of 3-iodothyronamine (3-T1AM) results in decreased body temperature and body weight in rodents. The trace amine-associated receptor (TAAR) 1, a family A G protein-coupled receptor, is a target of 3-T1AM. However, 3-T1AM effects still persist in mTaar1 knockout mice, which suggest so far unknown further receptor targets that are of physiological relevance. TAAR5 is a highly conserved TAAR subtype among mammals and we here tested TAAR5 as a potential 3-T1AM target. First, we investigated mouse Taar5 (mTaar5) expression in several brain regions of the mouse in comparison to mTaar1. Secondly, to unravel the full spectrum of signaling capacities, we examined the distinct Gs-, Gi/o-, G12/13-, Gq/11- and MAP kinase-mediated signaling pathways of mouse and human TAAR5 under ligand-independent conditions and after application of 3-T1AM. We found overlapping localization of mTaar1 and mTaar5 in the amygdala and ventromedial hypothalamus of the mouse brain. Second, the murine and human TAAR5 (hTAAR5) display significant basal activity in the Gq/11 pathway but show differences in the basal activity in Gs and MAP kinase signaling. In contrast to mTaar5, 3-T1AM application at hTAAR5 resulted in significant reduction in basal IP3 formation and MAP kinase signaling. In conclusion, our data suggest that the human TAAR5 is a target for 3-T1AM, exhibiting inhibitory effects on IP3 formation and MAP kinase signaling pathways, but does not mediate Gs signaling effects as observed for TAAR1. This study also indicates differences between TAAR5 orthologs with respect to their signaling profile. In consequence, 3-T1AM-mediated effects may differ between rodents and humans.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Tironinas/farmacologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
6.
Int J Mol Sci ; 15(11): 20638-55, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25391046

RESUMO

The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates G(s) signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of G(s) and/or G(i/o) signaling. Activation of G-proteins G(q/11) and G(12/13) was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal G(i/o) signaling activity, a so far unknown signaling pathway for TAARs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA