Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30983653

RESUMO

A new determination of the 229Th half-life was made based on measurements of the 229Th massic activity of a high-purity solution for which the 229Th molality had previously been measured. The 229Th massic activity was measured by direct comparison with SRM 4328C using 4παß liquid scintillation counting, NaI counting, and standard addition liquid scintillation counting. The massic activity was confirmed by isotope dilution alpha spectrometry measurements. The calculated 229Th half-life is (7825 ± 87) years (k = 2), which is shorter than the three most recent half-life determinations but is consistent with these values within uncertainties.

2.
J Chromatogr A ; 946(1-2): 59-68, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11873983

RESUMO

Due to the proteomics revolution, multi-dimensional separation and detection instruments are required to evaluate many peptides and proteins in single samples. In this study, electrospray ionization (ESI) ion mobility spectrometry (IMS) was evaluated as an additional separation after HPLC separations. Common HPLC mobile phase compositions (solvents, acid modifiers, and buffers) were assessed for the effect on ESI-IMS response. Up to 5 mM sodium phosphate, a non-volatile buffer, was able to be electrosprayed into the IMS without degradation of the instrumental performance. Due to the rapid separation times of IMS, multiple IMS spectra were obtained within a single HPLC peak. A five-peptide mixture was separated in a capillary HPLC column under isocratic conditions within 3 min. Coelution of two peaks due to non-optimal HPLC conditions occurred and these two peaks could not be distinguished by HPLC with UV detection. In contrast, the single ion mobility chromatograms provided separation of each peptide as well as providing a second degree of analyte identification (HPLC retention time and IMS mobility). Furthermore, IMS-MS analysis of the five peptides and comparison with HPLC retention times showed that each peptide had a unique retention time-ion mobility-mass to charge value. This work showed that IMS could be employed for direct separation and detection of HPLC eluents and also could be combined with HPLC-MS for three unique dimensions of separation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta
3.
Talanta ; 57(6): 1161-71, 2002 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-18968722

RESUMO

The results from this study illustrate the first time electrospray ionization-ion mobility spectrometry (ESI-IMS) has been used to separate inorganic cations in aqueous solutions. Using ESI-IMS nine inorganic cation solutions were analyzed. Counter ions affected both the sensitivity and the identity of the response ions. Aluminum sulfate, lanthanum chloride, strontium chloride, uranyl acetate, uranyl nitrate, and zinc sulfate produced spectra containing a single response ion. Aluminum nitrate and zinc acetate solutions produced multiple ion peaks, which increased the detection limits and the difficulty of identification. Cation detection limits ranged from 0.16 to 13 ngmul(-1) depending on the solution studied. The identities of the ion species detected were unconfirmed, but mass spectrometry literature suggested the detection of positively charged cation-solvent or cation-solvent-anion complexes. Finally, cations from strontium and lanthanum chloride solutions were separated with a resolution of 2.2. The results from this study suggest that ESI-IMS has potential as a field technique for the detection of metal cations and their complexes in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA