Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170738, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325444

RESUMO

Microbial acquisition and utilization of organic and mineral phosphorus (P) sources in paddy soils are strongly dependent on redox environment and remain the key to understand P turnover and allocation for cell compound synthesis. Using double 32/33P labeling, we traced the P from three sources in a P-limited paddy soil: ferric iron-bound phosphate (Fe-P), wheat straw P (Straw-P), and soil P (Soil-P) in microbial biomass P (MBP) and phospholipids (Phospholipid-P) of individual microbial groups depending on water regimes: (i) continuous flooding or (ii) alternate wetting and drying. 32/33P labeling combined with phospholipid fatty acid analysis allowed to trace P utilization by functional microbial groups. Microbial P nutrition was mainly covered by Soil-P, whereas microorganisms preferred to take up P from mineralized Straw-P than from Fe-P dissolution. The main Straw-P mobilizing agents were Actinobacteria under alternating wetting and drying and other Gram-positive bacteria under continuous flooding. Actinobacteria and arbuscular mycorrhiza increased P incorporation into cell membranes by 1.4-5.8 times under alternate wetting and drying compared to continuous flooding. The Fe-P contribution to MBP was 4-5 times larger in bulk than in rooted soil because (i) rice roots outcompeted microorganisms for P uptake from Fe-P and (ii) rhizodeposits stimulated microbial activity, e.g. phosphomonoesterase production and Straw-P mineralization. Higher phosphomonoesterase activities during slow soil drying compensated for the decreased reductive dissolution of Fe-P. Concluding, microbial P acquisition strategies depend on (i) Soil-P, especially organic P, availability, (ii) the activity of phosphomonoesterases produced by microorganisms and roots, and (iii) P sources - all of which depend on the redox conditions. Maximizing legacy P utilization in the soil as a function of the water regime is one potential way to reduce competition between roots and microbes for P in rice cultivation.


Assuntos
Oryza , Poluentes do Solo , Oryza/metabolismo , Fósforo/análise , Água/análise , Solo , Fosfolipídeos , Ferro/análise , Bactérias/metabolismo , Monoéster Fosfórico Hidrolases , Poluentes do Solo/análise
2.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271585

RESUMO

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Assuntos
Carbono , Floresta Úmida , Carbono/metabolismo , Ecossistema , Secas , Água/metabolismo , Árvores/metabolismo , Carboidratos , Folhas de Planta/metabolismo
4.
Nat Microbiol ; 8(8): 1480-1494, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524975

RESUMO

Drought impacts on microbial activity can alter soil carbon fate and lead to the loss of stored carbon to the atmosphere as CO2 and volatile organic compounds (VOCs). Here we examined drought impacts on carbon allocation by soil microbes in the Biosphere 2 artificial tropical rainforest by tracking 13C from position-specific 13C-pyruvate into CO2 and VOCs in parallel with multi-omics. During drought, efflux of 13C-enriched acetate, acetone and C4H6O2 (diacetyl) increased. These changes represent increased production and buildup of intermediate metabolites driven by decreased carbon cycling efficiency. Simultaneously,13C-CO2 efflux decreased, driven by a decrease in microbial activity. However, the microbial carbon allocation to energy gain relative to biosynthesis was unchanged, signifying maintained energy demand for biosynthesis of VOCs and other drought-stress-induced pathways. Overall, while carbon loss to the atmosphere via CO2 decreased during drought, carbon loss via efflux of VOCs increased, indicating microbially induced shifts in soil carbon fate.


Assuntos
Bactérias , Carbono , Secas , Floresta Úmida , Microbiologia do Solo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Solo/química , Clima Tropical , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Multiômica , Regulação Bacteriana da Expressão Gênica
5.
Sci Total Environ ; 899: 165689, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481084

RESUMO

Plant-soil-microbe interactions are crucial for driving rhizosphere processes that contribute to metabolite turnover and nutrient cycling. With the increasing frequency and severity of water scarcity due to climate warming, understanding how plant-mediated processes, such as root exudation, influence soil organic matter turnover in the rhizosphere is essential. In this study, we used 16S rRNA gene amplicon sequencing, rhizosphere metabolomics, and position-specific 13C-pyruvate labeling to examine the effects of three different plant species (Piper auritum, Hibiscus rosa sinensis, and Clitoria fairchildiana) and their associated microbial communities on soil organic carbon turnover in the rhizosphere. Our findings indicate that in these tropical plants, the rhizosphere metabolome is primarily shaped by the response of roots to drought rather than direct shifts in the rhizosphere bacterial community composition. Specifically, the reduced exudation of plant roots had a notable effect on the metabolome of the rhizosphere of P. auritum, with less reliance on neighboring microbes. Contrary to P. auritum, H. rosa sinensis and C. fairchildiana experienced changes in their exudate composition during drought, causing alterations to the bacterial communities in the rhizosphere. This, in turn, had a collective impact on the rhizosphere's metabolome. Furthermore, the exclusion of phylogenetically distant microbes from the rhizosphere led to shifts in its metabolome. Additionally, C. fairchildiana appeared to be associated with only a subset of symbiotic bacteria under drought conditions. These results indicate that plant species-specific microbial interactions systematically change with the root metabolome. As roots respond to drought, their associated microbial communities adapt, potentially reinforcing the drought tolerance strategies of plant roots. These findings have significant implications for maintaining plant health and preference during drought stress and improving plant performance under climate change.


Assuntos
Floresta Úmida , Microbiologia do Solo , Secas , Rizosfera , RNA Ribossômico 16S/genética , Carbono/metabolismo , Solo , Bactérias/metabolismo , Metaboloma , Raízes de Plantas/metabolismo
6.
Sci Total Environ ; 893: 164550, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295529

RESUMO

Grassland management practices vary in stocking rates and plant removal strategies (grazing versus mowing). They influence organic matter (OM) inputs, which were postulated as main controls of soil organic carbon (SOC) sequestration and might therefore control SOC stabilization. The aim of this study was to test this hypothesis by investigating the impacts of grassland harvesting regimes on parameters related to soil microbial functioning and soil organic matter (SOM) formation processes. We used a thirteen-year experiment in Central France under contrasting management (unmanaged, grazing with two intensities, mowing, bare fallow) to establish a carbon input gradient based on biomass leftovers after harvest. We investigated microbial biomass, basal respiration and enzyme activities as indicators of microbial functioning, and amino sugar content and composition as indicator of persistent SOM formation and origin through necromass accumulation. Responses of these parameters to carbon input along the gradient were contrasting and in most cases unrelated. Only the microbial C/N ratio and amino sugar contents showed a linear response indicating that they are influenced by plant-derived OM input. Other parameters were most probably more influenced by root activity, presence of herbivores, and/or physicochemical changes following management activities impacting soil microbial functioning. Grassland harvesting strategies influence SOC sequestration not only by changing carbon input quantity, but also through their effects on belowground processes possibly related to changing carbon input types and physiochemical soil properties.


Assuntos
Pradaria , Solo , Biomassa , Solo/química , Carbono/química , Herbivoria , Microbiologia do Solo
7.
Nat Commun ; 14(1): 2240, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076457

RESUMO

The concept of biomass growth is central to microbial carbon (C) cycling and ecosystem nutrient turnover. Microbial biomass is usually assumed to grow by cellular replication, despite microorganisms' capacity to increase biomass by synthesizing storage compounds. Resource investment in storage allows microbes to decouple their metabolic activity from immediate resource supply, supporting more diverse microbial responses to environmental changes. Here we show that microbial C storage in the form of triacylglycerides (TAGs) and polyhydroxybutyrate (PHB) contributes significantly to the formation of new biomass, i.e. growth, under contrasting conditions of C availability and complementary nutrient supply in soil. Together these compounds can comprise a C pool 0.19 ± 0.03 to 0.46 ± 0.08 times as large as extractable soil microbial biomass and reveal up to 279 ± 72% more biomass growth than observed by a DNA-based method alone. Even under C limitation, storage represented an additional 16-96% incorporation of added C into microbial biomass. These findings encourage greater recognition of storage synthesis as a key pathway of biomass growth and an underlying mechanism for resistance and resilience of microbial communities facing environmental change.


Assuntos
Carbono , Ecossistema , Biomassa , Carbono/metabolismo , Microbiologia do Solo , Nitrogênio/metabolismo , Solo
8.
New Phytol ; 237(3): 780-792, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35986650

RESUMO

Root hairs and soil water content are crucial in controlling the release and diffusion of root exudates and shaping profiles of biochemical properties in the rhizosphere. But whether root hairs can offset the negative impacts of drought on microbial activity remains unknown. Soil zymography, 14 C imaging and neutron radiography were combined to identify how root hairs and soil moisture affect rhizosphere biochemical properties. To achieve this, we cultivated two maize genotypes (wild-type and root-hair-defective rth3 mutant) under ambient and drought conditions. Root hairs and optimal soil moisture increased hotspot area, rhizosphere extent and kinetic parameters (Vmax and Km ) of ß-glucosidase activities. Drought enlarged the rhizosphere extent of root exudates and water content. Colocalization analysis showed that enzymatic hotspots were more colocalized with root exudate hotspots under optimal moisture, whereas they showed higher dependency on water hotspots when soil water and carbon were scarce. We conclude that root hairs are essential in adapting rhizosphere properties under drought to maintain plant nutrition when a continuous mass flow of water transporting nutrients to the root is interrupted. In the rhizosphere, soil water was more important than root exudates for hydrolytic enzyme activities under water and carbon colimitation.


Assuntos
Secas , Rizosfera , Água/análise , Raízes de Plantas/genética , Solo/química , Carbono , Microbiologia do Solo
9.
Sci Total Environ ; 854: 158709, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126705

RESUMO

Microorganisms govern soil nutrient cycling. It is therefore critical to understand their responses to human-induced increases in N and P inputs. We investigated microbial community composition, biomass, functional gene abundance, and enzyme activities in response to 10-year N and P addition in a primary tropical montane forest, and we explored the drivers behind these effects. Fungi were more sensitive to nutrient addition than bacteria, and the fungal community shift was mainly driven by P availability. N addition aggravated P limitation, to which microbes responded by increasing the abundance of P cycling functional genes and phosphatase activity. In contrast, P addition alleviated P deficiency, and thus P cycling functional gene abundance and phosphatase activity decreased. The shift of microbial community composition, changes in functional genes involved in P cycling, and phosphatase activity were mainly driven by P addition, which also induced the alteration of soil stoichiometry (C/P and N/P). Eliminating P deficiency through fertilization accelerated C cycling by increasing the activity of C degradation enzymes. The abundances of C and P functional genes were positively correlated, indicating the intensive coupling of C and P cycling in P-limited forest soil. In summary, a long-term fertilization experiment demonstrated that soil microorganisms could adapt to induced environmental changes in soil nutrient stoichiometry, not only through shifts of microbial community composition and functional gene abundances, but also through the regulation of enzyme production. The response of the microbial community to N and P imbalance and effects of the microbial community on soil nutrient cycling should be incorporated into the ecosystem biogeochemical model.


Assuntos
Microbiota , Nitrogênio , Humanos , Nitrogênio/análise , Solo/química , Fósforo/metabolismo , Microbiologia do Solo , Florestas , Fertilização , Monoéster Fosfórico Hidrolases , Carbono/metabolismo
10.
Sci Adv ; 8(44): eabq3958, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332015

RESUMO

The central carbon (C) metabolic network harvests energy to power the cell and feed biosynthesis for growth. In pure cultures, bacteria use some but not all of the network's major pathways, such as glycolysis and pentose phosphate and Entner-Doudoroff pathways. However, how these pathways are used in microorganisms in intact soil communities is unknown. Here, we analyzed the incorporation of 13C from glucose isotopomers into phospholipid fatty acids. We showed that groups of Gram-positive and Gram-negative bacteria in an intact agricultural soil used different pathways to metabolize glucose. They also differed in C use efficiency (CUE), the efficiency with which a substrate is used for biosynthesis. Our results provide experimental evidence for diversity among microbes in the organization of their central carbon metabolic network and CUE under in situ conditions. These results have important implications for our understanding of how community composition affects soil C cycling and organic matter formation.

11.
Sci Total Environ ; 850: 158118, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987234

RESUMO

Paddy soils regularly experience redox oscillations during the wetting and draining stages, yet the effects of short-term presence of oxygen (O2) on in-situ microbial hotspots and enzyme activities in anoxic ecosystems remain unclear. To fill this knowledge gap, we applied soil zymography to localize hotspots and activities of phosphomonoesterase (PME), ß-glucosidase (BG), and leucine aminopeptidase (LAP) in three compartments of rice-planted rhizoboxes (top bulk, rooted, and bottom bulk paddy soil) under oxic (+O2) and anoxic (O2) conditions. Short-term (35 min) aeration decreased PME activity by 13-49 %, BG by 4-52 %, and LAP by 12-61 % as compared with O2 in three soil compartments. The percentage of hotspot area was higher by 3-110 % for PME, by 10-60 % for BG, and by 12-158 % for LAP under +O2 vs. O2 conditions depending on a rice growth stage. Irrespective of the aeration conditions, the rhizosphere extent of rice plants for three enzymes was generally greater under higher moisture conditions and at earlier growth stage. Higher O2 sensitivity for the tested enzymes at bottom bulk soil versus other compartments suggested that short-term aeration during conventional zymography may lead to underestimation of nutrient mobilization in subsoil compared to top bulk soil. The intolerance of anaerobic microorganisms against the toxicity of O2 in the cells and the shift of microbial metabolic pathways may explain such a short-term suppression by O2. Our findings, therefore, show that anoxic conditions and soil moisture should be kept during zymography and probably other in-situ soil imaging methods when studying anoxic systems.


Assuntos
Oryza , Solo , Ecossistema , Leucil Aminopeptidase , Oxigênio , Monoéster Fosfórico Hidrolases , Microbiologia do Solo , beta-Glucosidase/metabolismo
12.
Front Plant Sci ; 13: 935829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928705

RESUMO

The activity of extracellular phosphatases is a dynamic process controlled by both plant roots and microorganisms, which is responsible for the mineralization of soil phosphorus (P). Plants regulate the availability of soil P through the release of root mucilage and the exudation of low-molecular weight organic acids (LMWOAs). Mucilage increases soil hydraulic conductivity as well as pore connectivity, both of which are associated with increased phosphatase activity. The LMWOAs, in turn, stimulate the mineralization of soil P through their synergistic effects of acidification, chelation, and exchange reactions. This article reviews the catalytic properties of extracellular phosphatases and their interactions with the rhizosphere interfaces. We observed a biphasic effect of root metabolic products on extracellular phosphatases, which notably altered their catalytic mechanism. In accordance with the proposed conceptual framework, soil P is acquired by both plants and microorganisms in a coupled manner that is characterized by the exudation of their metabolic products. Due to inactive or reduced root exudation, plants recycle P through adsorption on the soil matrix, thereby reducing the rhizosphere phosphatase activity. The two-phase conceptual framework might assist in understanding P-acquisition (substrate turnover) and P-restoration (phosphatase adsorption by soil) in various terrestrial ecosystems.

13.
Plant Cell Environ ; 45(10): 3122-3133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35909089

RESUMO

Consequences of interactions between ectomycorrhizal fungi (EcMF) and non-mycorrhizal rhizosphere fungi (NMRF) for plant carbon (C) allocation belowground and nutrient cycling in soil remain unknown. To address this topic, we performed a mesocosm study with Norway spruce seedlings [Picea abies (L.) H. Karst] inoculated with EcMF, NMRF, or a mixture of both (MIX). 14 CO2 pulse labelling of spruce was applied to trace and visualize the 14 C incorporation into roots, rhizohyphosphere and hyphosphere. Activities and localization of enzymes involved in the C, nitrogen (N) and phosphorus (P) cycling were visualized using zymography. Spruce seedlings inoculated with EcMF and NMRF allocated more C to soils (EcMF: 10.7%; NMRF: 3.5% of total recovered C) compared to uninoculated control seedlings. The 14 C activity in the hyphosphere was highest for EcMF and lowest for NMRF. In the presence of both, NMRF and EcMF (MIX), the 14 C activity was 64% lower compared with EcMF inoculation alone. This suggests a suppressed C allocation via EcMF likely due to the competition between EcMF and NMRF for N and P. Furthermore, we observed 57% and 49% higher chitinase and leucine-aminopeptidase activities in the rhizohyphosphere of EcMF compared to the uninoculated control, respectively. In contrast, ß-glucosidase activity (14.3 nmol cm-2 h-1 ) was highest in NMRF likely because NMRF consumed rhizodeposits efficiently. This was further supported by that enzyme stoichiometry in soil with EcMF shifted to a higher investment of nutrient acquisition enzymes (e.g., chitinase, leucine-aminopeptidase, acid phosphatase) compared to NMRF inoculation, where investment in ß-glucosidase increased. In conclusion, the alleviation of EcMF from C limitation promotes higher activities of enzymes involved in the N and P cycle to cover the nutrient demand of EcMF and host seedlings. In contrast, C limitation of NMRF probably led to a shift in investment towards higher activities of enzymes involved in the C cycle.


Assuntos
Abies , Celulases , Quitinases , Micorrizas , Picea , Pinus , Aminopeptidases/metabolismo , Quitinases/metabolismo , Fungos , Leucina/metabolismo , Micorrizas/metabolismo , Picea/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Plântula/metabolismo , Solo
14.
Sci Total Environ ; 837: 155810, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561910

RESUMO

Limitation of rice growth by low phosphorus (P) availability is a widespread problem in tropical and subtropical soils because of the high content of iron (Fe) (oxyhydr)oxides. Ferric iron-bound P (Fe(III)-P) can serve as a P source in paddies after Fe(III) reduction to Fe(II) and corresponding H2PO4- release. However, the relevance of reductive dissolution of Fe(III)-P for plant and microbial P uptake is still an open question. To quantify this, 32P-labeled ferrihydrite (30.8 mg P kg-1) was added to paddy soil mesocosms with rice to trace the P uptake by microorganisms and plants after Fe(III) reduction. Nearly 2% of 32P was recovered in rice plants, contributing 12% of the total P content in rice shoots and roots after 33 days. In contrast, 32P recovery in microbial biomass decreased from 0.5% to 0.08% of 32P between 10 and 33 days after rice transplantation. Microbial biomass carbon (MBC) and dissolved organic C content decreased from day 10 to 33 by 8-54% and 68-77%, respectively, suggesting that the microbial-mediated Fe(III) reduction was C-limited. The much faster decrease of MBC in rooted (by 54%) vs. bulk soil (8-36%) reflects very fast microbial turnover in the rice rhizosphere (high C and oxygen inputs) resulting in the mineralization of the microbial necromass. In conclusion, Fe(III)-P can serve as small but a relevant P source for rice production and could partly compensate plant P demand. Therefore, the P fertilization strategies should consider the P mobilization from Fe (oxyhydr)oxides in flooded paddy soils during rice growth. An increase in C availability for microorganisms in the rhizosphere intensifies P mobilization, which is especially critical at early stages of rice growth.


Assuntos
Oryza , Poluentes do Solo , Compostos Férricos/metabolismo , Ferro/análise , Óxidos , Fósforo/metabolismo , Solo , Poluentes do Solo/análise
15.
Nat Commun ; 13(1): 2681, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562338

RESUMO

The Tibetan Plateau's Kobresia pastures store 2.5% of the world's soil organic carbon (SOC). Climate change and overgrazing render their topsoils vulnerable to degradation, with SOC stocks declining by 42% and nitrogen (N) by 33% at severely degraded sites. We resolved these losses into erosion accounting for two-thirds, and decreased carbon (C) input and increased SOC mineralization accounting for the other third, and confirmed these results by comparison with a meta-analysis of 594 observations. The microbial community responded to the degradation through altered taxonomic composition and enzymatic activities. Hydrolytic enzyme activities were reduced, while degradation of the remaining recalcitrant soil organic matter by oxidative enzymes was accelerated, demonstrating a severe shift in microbial functioning. This may irreversibly alter the world´s largest alpine pastoral ecosystem by diminishing its C sink function and nutrient cycling dynamics, negatively impacting local food security, regional water quality and climate.


Assuntos
Pradaria , Microbiota , Carbono/análise , Ecossistema , Nitrogênio/análise , Solo , Microbiologia do Solo , Tibet
16.
Sci Rep ; 12(1): 5952, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396458

RESUMO

Comprehensive climate change mitigation necessitates soil carbon (C) storage in cultivated terrestrial ecosystems. Deep-rooted perennial crops may help to turn agricultural soils into efficient C sinks, especially in deeper soil layers. Here, we compared C allocation and potential stabilization to 150 cm depth from two functionally distinct deep-rooted perennials, i.e., lucerne (Medicago sativa L.) and intermediate wheatgrass (kernza; Thinopyrum intermedium), representing legume and non-legume crops, respectively. Belowground C input and stabilization was decoupled from nitrogen (N) fertilizer rate in kernza (100 and 200 kg mineral N ha-1), with no direct link between increasing mineral N fertilization, rhizodeposited C, and microbial C stabilization. Further, both crops displayed a high ability to bring C to deeper soil layers and remarkably, the N2-fixing lucerne showed greater potential to induce microbial C stabilization than the non-legume kernza. Lucerne stimulated greater microbial biomass and abundance of N cycling genes in rhizosphere soil, likely linked to greater amino acid rhizodeposition, hence underlining the importance of coupled C and N for microbial C stabilization efficiency. Inclusion of legumes in perennial cropping systems is not only key for improved productivity at low fertilizer N inputs, but also appears critical for enhancing soil C stabilization, in particular in N limited deep subsoils.


Assuntos
Fertilizantes , Solo , Agricultura , Carbono/metabolismo , Produtos Agrícolas/metabolismo , Ecossistema , Medicago sativa/metabolismo , Nitrogênio , Solo/química
17.
Biogeochemistry ; 158(1): 39-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221401

RESUMO

Sustainable forest management requires understanding of ecosystem phosphorus (P) cycling. Lang et al. (2017) [Biogeochemistry, https://doi.org/10.1007/s10533-017-0375-0] introduced the concept of P-acquiring vs. P-recycling nutrition strategies for European beech (Fagus sylvatica L.) forests on silicate parent material, and demonstrated a change from P-acquiring to P-recycling nutrition from P-rich to P-poor sites. The present study extends this silicate rock-based assessment to forest sites with soils formed from carbonate bedrock. For all sites, it presents a large set of general soil and bedrock chemistry data. It thoroughly describes the soil P status and generates a comprehensive concept on forest ecosystem P nutrition covering the majority of Central European forest soils. For this purpose, an Ecosystem P Nutrition Index (ENI P ) was developed, which enabled the comparison of forest P nutrition strategies at the carbonate sites in our study among each other and also with those of the silicate sites investigated by Lang et al. (2017). The P status of forest soils on carbonate substrates was characterized by low soil P stocks and a large fraction of organic Ca-bound P (probably largely Ca phytate) during early stages of pedogenesis. Soil P stocks, particularly those in the mineral soil and of inorganic P forms, including Al- and Fe-bound P, became more abundant with progressing pedogenesis and accumulation of carbonate rock dissolution residue. Phosphorus-rich impure, silicate-enriched carbonate bedrock promoted the accumulation of dissolution residue and supported larger soil P stocks, mainly bound to Fe and Al minerals. In carbonate-derived soils, only low P amounts were bioavailable during early stages of pedogenesis, and, similar to P-poor silicate sites, P nutrition of beech forests depended on tight (re)cycling of P bound in forest floor soil organic matter (SOM). In contrast to P-poor silicate sites, where the ecosystem P nutrition strategy is direct biotic recycling of SOM-bound organic P, recycling during early stages of pedogenesis on carbonate substrates also involves the dissolution of stable Ca-Porg precipitates formed from phosphate released during SOM decomposition. In contrast to silicate sites, progressing pedogenesis and accumulation of P-enriched carbonate bedrock dissolution residue at the carbonate sites promote again P-acquiring mechanisms for ecosystem P nutrition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10533-021-00884-7.

18.
Environ Sci Technol ; 56(3): 2021-2032, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048708

RESUMO

As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific 13C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways. Drought had a species-specific impact on the metabolic profiles and spatial distribution in Piper sp. and Hibiscus rosa sinensis roots, signifying different defense mechanisms; Piper sp. enhanced root structural defense via recalcitrant compounds including lignin, while H. rosa sinensis enhanced biochemical defense via secretion of antioxidants and fatty acids. In contrast, Clitoria fairchildiana, a legume tree, was not influenced as much by drought but rather by rhizosphere presence where carbohydrate storage was enhanced, indicating a close association with symbiotic microbes. This study demonstrates how multiple techniques can be combined to identify how plants cope with drought through different drought-tolerance strategies and the consequences of such changes on below-ground organic matter composition.


Assuntos
Secas , Raízes de Plantas , Metabolômica , Raízes de Plantas/metabolismo , Plantas , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
19.
Glob Chang Biol ; 28(2): 654-664, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653297

RESUMO

The global methane (CH4 ) budget is based on a sensitive balance between methanogenesis and CH4 oxidation (aerobic and anaerobic). The response of these processes to climate warming, however, is not quantified. This largely reflects our lack of knowledge about the temperature sensitivity (Q10 ) of the anaerobic oxidation of CH4 (AOM)-a ubiquitous process in soils. Based on a 13 CH4 labeling experiment, we determined the rate, Q10 and activation energy of AOM and of methanogenesis in a paddy soil at three temperatures (5, 20, 35°C). The rates of AOM and of methanogenesis increased exponentially with temperature, whereby the AOM rate was significantly lower than methanogenesis. Both the activation energy and Q10 of AOM dropped significantly from 5-20 to 20-35°C, indicating that AOM is a highly temperature-dependent microbial process. Nonetheless, the Q10 of AOM and of methanogenesis were similar at 5-35°C, implying a comparable temperature dependence of AOM and methanogenesis in paddy soil. The continuous increase of AOM Q10 over the 28-day experiment reflects the successive utilization of electron acceptors according to their thermodynamic efficiency. The basic constant for Q10 of AOM was calculated to be 0.1 units for each 3.2 kJ mol-1 increase of activation energy. We estimate the AOM in paddy soils to consume 2.2~5.5 Tg CH4 per year on a global scale. Considering these results in conjunction with literature data, the terrestrial AOM in total consumes ~30% of overall CH4 production. Our data corroborate a similar Q10 of AOM and methanogenesis. As the rate of AOM in paddy soils is lower than methanogenesis, however, it will not fully compensate for an increased methane production under climate warming.


Assuntos
Metano , Solo , Anaerobiose , Aquecimento Global , Temperatura
20.
Science ; 374(6574): 1514-1518, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914503

RESUMO

Severe droughts endanger ecosystem functioning worldwide. We investigated how drought affects carbon and water fluxes as well as soil-plant-atmosphere interactions by tracing 13CO2 and deep water 2H2O label pulses and volatile organic compounds (VOCs) in an enclosed experimental rainforest. Ecosystem dynamics were driven by different plant functional group responses to drought. Drought-sensitive canopy trees dominated total fluxes but also exhibited the strongest response to topsoil drying. Although all canopy-forming trees had access to deep water, these reserves were spared until late in the drought. Belowground carbon transport was slowed, yet allocation of fresh carbon to VOCs remained high. Atmospheric VOC composition reflected increasing stress responses and dynamic soil-plant-atmosphere interactions, potentially affecting atmospheric chemistry and climate feedbacks. These interactions and distinct functional group strategies thus modulate drought impacts and ecosystem susceptibility to climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA