Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inflamm Regen ; 42(1): 12, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35366945

RESUMO

BACKGROUND: Age-driven immune signals cause a state of chronic low-grade inflammation and in consequence affect bone healing and cause challenges for clinicians when repairing critical-sized bone defects in elderly patients. METHODS: Poly(L-lactide-co-ɛ-caprolactone) (PLCA) scaffolds are functionalized with plant-derived nanoparticles from potato, rhamnogalacturonan-I (RG-I), to investigate their ability to modulate inflammation in vitro in neutrophils and macrophages at gene and protein levels. The scaffolds' early and late host response at gene, protein and histological levels is tested in vivo in a subcutaneous rat model and their potential to promote bone regeneration in an aged rodent was tested in a critical-sized calvaria bone defect. Significant differences were tested using one-way ANOVA, followed by a multiple-comparison Tukey's test with a p value ≤ 0.05 considered significant. RESULTS: Gene expressions revealed PLCA scaffold functionalized with plant-derived RG-I with a relatively higher amount of galactose than arabinose (potato dearabinated (PA)) to reduce the inflammatory state stimulated by bacterial LPS in neutrophils and macrophages in vitro. LPS-stimulated neutrophils show a significantly decreased intracellular accumulation of galectin-3 in the presence of PA functionalization compared to Control (unmodified PLCA scaffolds). The in vivo gene and protein expressions revealed comparable results to in vitro. The host response is modulated towards anti-inflammatory/ healing at early and late time points at gene and protein levels. A reduced foreign body reaction and fibrous capsule formation is observed when PLCA scaffolds functionalized with PA were implanted in vivo subcutaneously. PLCA scaffolds functionalized with PA modulated the cytokine and chemokine expressions in vivo during early and late inflammatory phases. PLCA scaffolds functionalized with PA implanted in calvaria defects of aged rats downregulating pro-inflammatory gene markers while promoting osteogenic markers after 2 weeks in vivo. CONCLUSION: We have shown that PLCA scaffolds functionalized with plant-derived RG-I with a relatively higher amount of galactose play a role in the modulation of inflammatory responses both in vitro and in vivo subcutaneously and promote the initiation of bone formation in a critical-sized bone defect of an aged rodent. Our study addresses the increasing demand in bone tissue engineering for immunomodulatory 3D scaffolds that promote osteogenesis and modulate immune responses.

2.
Rev Sci Instrum ; 91(4): 045105, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357743

RESUMO

In cleanroom environments, light scattering airborne particle counters are typically employed to monitor particle contamination of production lines and for general classification purposes. In addition to the amount of airborne particles, these instruments also measure the size of each registered particle. This is essential for quality assurance, as different particle sizes have various associated risks connected. Critical parameters for particle sizing are therefore an instrument's size resolution and size setting, and these need regular calibration. The ISO standard 21501-4:2018 describes a calibration method, yet this method requires detailed technical insider knowledge. In this paper, we present an alternative method that allows direct in-use calibration of a particle counter without the need for information, which is typically only available to the instrument manufacturer. In a direct comparison, both methods perform in compliance with the requirements in ISO 21501-4:2018, although our direct approach generally yields lower uncertainties. In addition, our calibration method provides results that are closely related to the instrument's properties during its application, contrary to the ISO method's indirect calibration procedure that requires voltage readouts from internal terminals.

3.
Nano Lett ; 20(2): 887-895, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31891513

RESUMO

We present an in-depth analysis of the surface band alignment and local potential distribution of InP nanowires containing a p-n junction using scanning probe and photoelectron microscopy techniques. The depletion region is localized to a 15 nm thin surface region by scanning tunneling spectroscopy and an electronic shift of up to 0.5 eV between the n- and p-doped nanowire segments was observed and confirmed by Kelvin probe force microscopy. Scanning photoelectron microscopy then allowed us to measure the intrinsic chemical shift of the In 3d, In 4d, and P 2p core level spectra along the nanowire and the effect of operating the nanowire diode in forward and reverse bias on these shifts. Thanks to the high-resolution techniques utilized, we observe fluctuations in the potential and chemical energy of the surface along the nanowire in great detail, exposing the sensitive nature of nanodevices to small scale structural variations.

4.
Nanomaterials (Basel) ; 8(8)2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110971

RESUMO

Atomic force microscopy (AFM) has emerged as a popular tool for the mechanical mapping of soft nanomaterials due to its high spatial and force resolution. Its applications in rigid nanomaterials, however, have been underexplored. In this work, we studied elasticity mapping of common rigid materials by AFM, with a focus on factors that affect the accuracy of elasticity measurements. We demonstrated the advantages in speed and noise level by using high frequency mechanical mapping compared to the classical force volume mapping. We studied loading force dependency, and observed a consistent pattern on all materials, where measured elasticity increased with loading force before stabilizing. Tip radius was found to have a major impact on the accuracy of measured elasticity. The blunt tip with 200 nm radius measured elasticity with deviation from nominal values up to 13% in different materials, in contrast to 122% by the sharp tip with 40 nm radius. Plastic deformation is believed to be the major reason for this difference. Sharp tips, however, still hold advantages in resolution and imaging capability for nanomaterials.

5.
Clin Oral Implants Res ; 28(3): 298-307, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26988403

RESUMO

INTRODUCTION: A major determinant of successful osseointegration of endosseous implants is the surface of the implant, which influences the cellular response of the surrounding tissues. A new strategy to improve osseointegration and bone healing is biochemical stimulation by surface nanocoatings that may increase adhesion of bone proteins, and bone cells at the implant surface. Nanocoating with pectins, plant cell wall-derived polysaccharides, is frequently done using rhamnogalacturonan-I (RG-I). AIM: The aim of the study was to evaluate the effect of nanocoating titanium implants with plant cell wall-derived rhamnogalacturonan-I, on bone healing and osseointegration. MATERIAL AND METHODS: Machined titanium implants were coated with three modifications of rhamnogalacturonan-I (RG-I). Chemical and physical surface properties were examined before insertion of nanocoated implants (n = 96) into the left and right tibia of rabbits. Machined titanium implants without RG-I nanocoating were used as controls (n = 32). Total number of 128 implants was placed in tibias of 16 rabbits. Fluorochrome bone labels, calcein green and alizarin red S were given intravenously after 9 and 12 days, respectively. The bone response to the nanocoated implants was analyzed qualitatively and quantitatively after 2, 4, 6, and 8 weeks of healing using light microscopy and histomorphometric methods. RESULTS: The RG-I coating influenced the surface chemical composition; wettability and roughness, making the surface more hydrophilic without any major effect on surface micro roughness compared to control implant surfaces. The different modifications of pectin RG-I did not significantly enhance bone healing and osseointegration analyzed after 2, 4, 6, and 8 weeks of healing compared to control implants. Although the qualitative analyses of the fluorochromes indicated a higher activity of bone formation in the mineralization front at the early stage, after 9 and 12 days at the RG-I nanocoated implants compared to the control implants although no significant quantitative difference was demonstrated. CONCLUSION: The present study showed that nanocoating of titanium implants with pectin RG-Is did not significantly enhance bone healing and osseointegration when placed in rabbit tibia bone.


Assuntos
Implantação Dentária Endóssea , Implantes Dentários , Pectinas , Titânio/química , Animais , Materiais Revestidos Biocompatíveis/química , Planejamento de Prótese Dentária , Implantes Experimentais , Osseointegração , Osteogênese/fisiologia , Coelhos , Propriedades de Superfície
6.
Environ Sci Pollut Res Int ; 24(14): 12683-12690, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27837468

RESUMO

This study focuses on the characterization of photocatalytic TiO2 coatings using Kelvin probe force microscopy. While most photocatalytic experiments are carried out at a macroscopic scale, Kelvin probe force microscopy is a microscopic technique that is surface sensitive. In order to link microscale results to macroscopic experiments, a simple method to establish the relation between Kelvin probe force microscopy and electrochemical measurements is presented by the calibration of a reference sample consisting of epitaxial deposited Cu-Ni-Au that is used as a transfer standard. The photocatalytic properties of TiO2 at macro- and microscopic scales are investigated by comparing photocatalytic degradation of acetone and electrochemical experiments to Kelvin probe force microscopy. The good agreement between the macro- and microscopic experiments suggests that Kelvin probe force microscopy can be a valuable tool towards the understanding, standardization and design of TiO2-based solutions in photocatalytic applications.


Assuntos
Microscopia de Força Atômica , Titânio/química , Catálise
7.
ACS Appl Mater Interfaces ; 6(24): 22224-34, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25436873

RESUMO

The photocatalytic behavior of magnetron sputtered anatase TiO2 coatings on copper, nickel, and gold was investigated with the aim of understanding the effect of the metallic substrate and coating-substrate interface structure. Stoichiometry and nanoscale structure of the coating were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscope, and scanning and transmission electron microscopy. Photocatalytic behavior of the coating was explored by using optical spectrophotometry and electrochemical methods via photovoltage, photocurrent, and scanning kelvin probe microscopy measurements. The nature of the metal substrate and coating-substrate interface had profound influence on the photocatalytic behavior. Less photon energy was required for TiO2 excitation on a nickel substrate, whereas TiO2 coating on copper showed a higher band gap attributed to quantum confinement. However, the TiO2 coating on gold exhibited behavior typical of facile transfer of electrons to and from the CB, therefore requiring only a small amount of photon energy to make the TiO2 coating conductive.

8.
Mater Sci Eng C Mater Biol Appl ; 43: 117-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25175196

RESUMO

Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro.


Assuntos
Materiais Revestidos Biocompatíveis , Nanoestruturas , Osteoblastos/citologia , Pectinas/química , Titânio , Sequência de Carboidratos , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Espectroscopia Fotoeletrônica
9.
J Biomed Mater Res A ; 102(6): 1961-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23852647

RESUMO

Osseointegration is important when implants are inserted into the bone and can be improved by biochemical surface coating of the implant. In this paper enzymatically modified rhamnogalacturonan I (RG-I) from apple and lupin was used for biochemical coating of aminated surfaces and the importance of the quality of RG-I, the nature of the binding, the fine structure of RG-I, and its effect on SaOS-2 cell line cultured on coated surfaces was investigated. SaOS-2 cells are osteoblast-like cells and a well-established in vitro model of bone-matrix forming osteoblasts. Purification by gel filtration could remove small fragments of galacturonic acid (GalA) and binding studies showed that the purity of the RG-I molecules was important for the quality of the coating. The structure of RG-I and osteoblast-like cells' viability were positively correlated so that high content of 1,4-linked galactose (Gal) and a low content of arabinose in the RG-I molecules favored cell viability. These results indicate that coating of implants with RG-I affect osseointegration positively.


Assuntos
Materiais Revestidos Biocompatíveis/química , Osteoblastos/citologia , Pectinas/química , Linhagem Celular , Sobrevivência Celular , Implantes Dentários , Humanos , Lupinus/química , Malus/química
10.
Opt Express ; 20(19): 21678-86, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037286

RESUMO

An efficient forward scattering model is constructed for penetrable 2D submicron particles on rough substrates. The scattering and the particle-surface interaction are modeled using discrete sources with complex images. The substrate micro-roughness is described by a heuristic surface transfer function. The forward model is applied in the numerical estimation of the profile of a platinum (Pt) submicron wire on rough silicon (Si) substrate, based on experimental Bidirectional Reflectance Distribution Function (BRDF) data.

11.
Nanotechnology ; 22(6): 062001, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212479

RESUMO

This review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale. Nanostructured materials and surfaces, which are seen as key materials areas having specific metrology challenges, are covered next. The final section describes biological nanometrology, which is perhaps the most interdisciplinary applications area, and presents unique challenges. Within each area, a review is provided of current status, the capabilities and limitations of current techniques and instruments, and future directions being driven by emerging industrial measurement requirements. Issues of traceability, standardization, national and international programmes, regulation and skills development will be discussed in a future paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA