Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 10(1): 4392, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152325

RESUMO

Portal vein ligation (PVL) induces liver growth prior to resection. Associating liver partition and portal vein ligation (PVL plus transection=ALPPS) or the addition of the prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG) to PVL both accelerate growth via stabilization of HIF-α subunits. This study aims at clarifying the crosstalk of hepatocytes (HC), hepatic stellate cells (HSC) and liver sinusoidal endothelial cells (LSEC) in accelerated liver growth. In vivo, liver volume, HC proliferation, vascular density and HSC activation were assessed in PVL, ALPPS, PVL+DMOG and DMOG alone. Proliferation of HC, HSC and LSEC was determined under DMOG in vitro. Conditioned media experiments of DMOG-exposed cells were performed. ALPPS and PVL+DMOG accelerated liver growth and HC proliferation in comparison to PVL. DMOG alone did not induce HC proliferation, but led to increased vascular density, which was also observed in ALPPS and PVL+DMOG. Activated HSC were detected in ALPPS, PVL+DMOG and DMOG, again not in PVL. In vitro, DMOG had no proliferative effect on HC, but conditioned supernatant of DMOG-treated HSC induced VEGF-dependent proliferation of LSEC. Transcriptome analysis confirmed activation of proangiogenic factors in hypoxic HSC. Hypoxia signaling in HSC induces VEGF-dependent angiogenesis. HSC play a crucial role in the cellular crosstalk of rapid liver regeneration.


Assuntos
Células Estreladas do Fígado/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Regeneração Hepática , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Biomarcadores , Proliferação de Células , Suscetibilidade a Doenças , Modelos Animais , Modelos Biológicos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Gastrointest Surg ; 22(2): 203-213, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28766271

RESUMO

BACKGROUND: Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) induces more rapid liver growth than portal vein ligation (PVL). Transection of parenchyma in ALPPS may prevent the formation of collaterals between lobes. The aim of this study was to determine if abrogating the formation of collaterals through parenchymal transection impacted growth rate. METHODS: Twelve Yorkshire Landrace pigs were randomized to undergo ALPPS, PVL, or "partial ALPPS" by varying degrees of parenchymal transection. Hepatic volume was measured after 7 days. Portal blood flow and pressure were measured. Portal vein collaterals were examined from epoxy casts. RESULTS: PVL, ALPPS, and partial ALPPS led to volume increases of the RLL by 15.5% (range 3-22), 64% (range 45-76), and 32% (range 18-77), respectively, with significant differences between PVL and ALPPS/partial ALPPS (p < 0.05). In PVL and partial ALPPS, substantial new portal vein collaterals were found. The number of collaterals correlated inversely with the growth rate (p = 0.039). Portal vein pressure was elevated in all models after ligation suggesting hyperflow to the portal vein-supplied lobe (p < 0.05). CONCLUSIONS: These data suggest that liver hypertrophy following PVL is inversely proportional to the development of collaterals. Hypertrophy after ALPPS is likely more rapid due to reduction of collaterals through transection.


Assuntos
Hipertrofia , Regeneração Hepática , Fígado/anatomia & histologia , Fígado/cirurgia , Neovascularização Fisiológica , Veia Porta/cirurgia , Animais , Hepatectomia/métodos , Ligadura , Fígado/fisiologia , Circulação Hepática , Tamanho do Órgão , Pressão na Veia Porta , Distribuição Aleatória , Suínos
4.
J Neuroinflammation ; 7: 3, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20074346

RESUMO

BACKGROUND: Luteolin, a plant derived flavonoid, exerts a variety of pharmacological activities and anti-oxidant properties associated with its capacity to scavenge oxygen and nitrogen species. Luteolin also shows potent anti-inflammatory activities by inhibiting nuclear factor kappa B (NFkB) signaling in immune cells. To better understand the immuno-modulatory effects of this important flavonoid, we performed a genome-wide expression analysis in pro-inflammatory challenged microglia treated with luteolin and conducted a phenotypic and functional characterization. METHODS: Resting and LPS-activated BV-2 microglia were treated with luteolin in various concentrations and mRNA levels of pro-inflammatory markers were determined. DNA microarray experiments and bioinformatic data mining were performed to capture global transcriptomic changes following luteolin stimulation of microglia. Extensive qRT-PCR analyses were carried out for an independent confirmation of newly identified luteolin-regulated transcripts. The activation state of luteolin-treated microglia was assessed by morphological characterization. Microglia-mediated neurotoxicity was assessed by quantifying secreted nitric oxide levels and apoptosis of 661W photoreceptors cultured in microglia-conditioned medium. RESULTS: Luteolin dose-dependently suppressed pro-inflammatory marker expression in LPS-activated microglia and triggered global changes in the microglial transcriptome with more than 50 differentially expressed transcripts. Pro-inflammatory and pro-apoptotic gene expression was effectively blocked by luteolin. In contrast, mRNA levels of genes related to anti-oxidant metabolism, phagocytic uptake, ramification, and chemotaxis were significantly induced. Luteolin treatment had a major effect on microglial morphology leading to ramification of formerly amoeboid cells associated with the formation of long filopodia. When co-incubated with luteolin, LPS-activated microglia showed strongly reduced NO secretion and significantly decreased neurotoxicity on 661W photoreceptor cultures. CONCLUSIONS: Our findings confirm the inhibitory effects of luteolin on pro-inflammatory cytokine expression in microglia. Moreover, our transcriptomic data suggest that this flavonoid is a potent modulator of microglial activation and affects several signaling pathways leading to a unique phenotype with anti-inflammatory, anti-oxidative, and neuroprotective characteristics. With the identification of several novel luteolin-regulated genes, our findings provide a molecular basis to understand the versatile effects of luteolin on microglial homeostasis. The data also suggest that luteolin could be a promising candidate to develop immuno-modulatory and neuroprotective therapies for the treatment of neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Luteolina/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , Biologia Computacional/métodos , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Perfilação da Expressão Gênica/métodos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/química , Óxido Nítrico/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA