Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Catal ; 14(1): 104-115, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205021

RESUMO

Interactions between catalysts and substrates can be highly complex and dynamic, often complicating the development of models to either predict or understand such processes. A dirhodium(II)-catalyzed C-H insertion of donor/donor carbenes into 2-alkoxybenzophenone substrates to form benzodihydrofurans was selected as a model system to explore nonlinear methods to achieve a mechanistic understanding. We found that the application of traditional methods of multivariate linear regression (MLR) correlating DFT-derived descriptors of catalysts and substrates leads to poorly performing models. This inspired the introduction of nonlinear descriptor relationships into modeling by applying the sure independence screening and sparsifying operator (SISSO) algorithm. Based on SISSO-generated descriptors, a high-performing MLR model was identified that predicts external validation points well. Mechanistic interpretation was aided by the deconstruction of feature relationships using chemical space maps, decision trees, and linear descriptors. Substrates were found to have a strong dependence on steric effects for determining their innate cyclization selectivity preferences. Catalyst reactive site features can then be matched to product features to tune or override the resultant diastereoselectivity within the substrate-dictated ranges. This case study presents a method for understanding complex interactions often encountered in catalysis by using nonlinear modeling methods and linear deconvolution by pattern recognition.

2.
Chem Sci ; 13(4): 1030-1036, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35211269

RESUMO

Intramolecular C-H insertions with donor/donor dirhodium carbenes provide a concise and highly stereoselective method to set two contiguous stereocenters in a single step. Herein, we report the insertion of donor/donor carbenes into stereogenic carbon centers allowing access to trisubstituted benzodihydrofurans in a single step. This study illuminates, for the first time, the stereochemical impact on the carbene center and delineates the structural factors that enable control over both stereogenic centers. Sterically bulky, highly activated C-H insertion centers exhibit high substrate control yielding a single diastereomer and a single enantiomer of product regardless of the catalyst used. Less bulky, less activated C-H insertion centers exhibit catalyst control over the diastereomeric ratio (dr), where a single enantiomer of each diastereomer is observed with high selectivity. A combination of experimental studies and DFT calculations was used to elucidate the origin of these results. First, hydride transfer from the stereogenic insertion site proceeds with high stereoselectivity to the carbene center, thus determining the absolute configuration of the product. Second, the short lived zwitterionic intermediate can diaster-eoselectively ring-close by a hitherto unreported SE2 mechanism that is either controlled by the substrate or the catalyst. These results demonstrate that donor/donor carbenes undergo uniquely stereoselective reactions that originate from a stepwise reaction mechanism, in contrast to the analogous concerted reactions of carbenes with one or more electron-withdrawing groups attached.

3.
ACS Omega ; 7(1): 716-732, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036738

RESUMO

The heterochromatin protein 1 (HP1) sub-family of CBX chromodomains are responsible for the recognition of histone H3 lysine 9 tri-methyl (H3K9me3)-marked nucleosomal substrates through binding of the N-terminal chromodomain. These HP1 proteins, namely, CBX1 (HP1ß), CBX3 (HP1γ), and CBX5 (HP1α), are commonly associated with regions of pericentric heterochromatin, but recent literature studies suggest that regulation by these proteins is likely more dynamic and includes other loci. Importantly, there are no chemical tools toward HP1 chromodomains to spatiotemporally explore the effects of HP1-mediated processes, underscoring the need for novel HP1 chemical probes. Here, we report the discovery of HP1 targeting peptidomimetic compounds, UNC7047 and UNC7560, and a biotinylated derivative tool compound, UNC7565. These compounds represent an important milestone, as they possess nanomolar affinity for the CBX5 chromodomain by isothermal titration calorimetry (ITC) and bind HP1-containing complexes in cell lysates. These chemical tools provide a starting point for further optimization and the study of CBX5-mediated processes.

4.
J Med Chem ; 65(3): 2646-2655, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35014255

RESUMO

Development of inhibitors for histone methyllysine reader proteins is an active area of research due to the importance of reader protein-methyllysine interactions in transcriptional regulation and disease. Optimized peptide-based chemical probes targeting methyllysine readers favor larger alkyllysine residues in place of methyllysine. However, the mechanism by which these larger substituents drive tighter binding is not well understood. This study describes the development of a two-pronged approach combining genetic code expansion (GCE) and structure-activity relationships (SAR) through systematic variation of both the aromatic binding pocket in the protein and the alkyllysine residues in the peptide to probe inhibitor recognition in the CBX5 chromodomain. We demonstrate a novel change in driving force for larger alkyllysines, which weaken cation-π interactions but increases dispersion forces, resulting in tighter binding. This GCE-SAR approach establishes discrete energetic contributions to binding from both ligand and protein, providing a powerful tool to gain mechanistic understanding of SAR trends.


Assuntos
Homólogo 5 da Proteína Cromobox/metabolismo , Lisina/análogos & derivados , Peptidomiméticos/metabolismo , Homólogo 5 da Proteína Cromobox/química , Homólogo 5 da Proteína Cromobox/genética , Código Genético , Humanos , Ligantes , Estrutura Molecular , Mutagênese Sítio-Dirigida , Peptidomiméticos/química , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Eletricidade Estática , Relação Estrutura-Atividade
5.
Cell Chem Biol ; 26(10): 1365-1379.e22, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422906

RESUMO

Polycomb-directed repression of gene expression is frequently misregulated in human diseases. A quantitative and target-specific cellular assay was utilized to discover the first potent positive allosteric modulator (PAM) peptidomimetic, UNC4976, of nucleic acid binding by CBX7, a chromodomain methyl-lysine reader of Polycomb repressive complex 1. The PAM activity of UNC4976 resulted in enhanced efficacy across three orthogonal cellular assays by simultaneously antagonizing H3K27me3-specific recruitment of CBX7 to target genes while increasing non-specific binding to DNA and RNA. PAM activity thereby reequilibrates PRC1 away from H3K27me3 target regions. Together, our discovery and characterization of UNC4976 not only revealed the most cellularly potent PRC1-specific chemical probe to date, but also uncovers a potential mechanism of Polycomb regulation with implications for non-histone lysine methylated interaction partners.


Assuntos
Descoberta de Drogas , Peptidomiméticos/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Peptidomiméticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA