Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 132: 83-97, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336612

RESUMO

Daytime HONO photolysis is an important source of atmospheric hydroxyl radicals (OH). Knowledge of HONO formation chemistry under typical haze conditions, however, is still limited. In the Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain in 2018, we investigated the wintertime HONO formation and its atmospheric implications at a rural site Gucheng. Three different episodes based on atmospheric aerosol loading levels were classified: clean periods (CPs), moderately polluted periods (MPPs) and severely polluted periods (SPPs). Correlation analysis revealed that HONO formation via heterogeneous conversion of NO2 was more efficient on aerosol surfaces than on ground, highlighting the important role of aerosols in promoting HONO formation. Daytime HONO budget analysis indicated a large missing source (with an average production rate of 0.66 ± 0.26, 0.97 ± 0.47 and 1.45 ± 0.55 ppbV/hr for CPs, MPPs and SPPs, respectively), which strongly correlated with photo-enhanced reactions (NO2 heterogeneous reaction and particulate nitrate photolysis). Average OH formation derived from HONO photolysis reached up to (0.92 ± 0.71), (1.75 ± 1.26) and (1.82 ± 1.47) ppbV/hr in CPs, MPPs and SPPs respectively, much higher than that from O3 photolysis (i.e., (0.004 ± 0.004), (0.006 ± 0.007) and (0.0035 ± 0.0034) ppbV/hr). Such high OH production rates could markedly regulate the atmospheric oxidation capacity and hence promote the formation of secondary aerosols and pollutants.


Assuntos
Poluentes Ambientais , Ácido Nitroso , Ácido Nitroso/análise , Poluentes Ambientais/análise , Dióxido de Nitrogênio/análise , China , Aerossóis/análise
2.
Proc Natl Acad Sci U S A ; 115(50): E11595-E11603, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478047

RESUMO

Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m-3, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m-3) with more than 100-fold enhanced peak values (up to ∼720 ng·m-3). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h-1 due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA