Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084503

RESUMO

Contemporary gene flow, when resumed after a period of isolation, can have crucial consequences for endangered species, as it can both increase the supply of adaptive alleles and erode local adaptation. Determining the history of gene flow and thus the importance of contemporary hybridization, however, is notoriously difficult. Here, we focus on two endangered plant species, Arabis nemorensis and A. sagittata, which hybridize naturally in a sympatric population located on the banks of the Rhine. Using reduced genome sequencing, we determined the phylogeography of the two taxa but report only a unique sympatric population. Molecular variation in chloroplast DNA indicated that A. sagittata is the principal receiver of gene flow. Applying classical D-statistics and its derivatives to whole-genome data of 35 accessions, we detect gene flow not only in the sympatric population but also among allopatric populations. Using an Approximate Bayesian computation approach, we identify the model that best describes the history of gene flow between these taxa. This model shows that low levels of gene flow have persisted long after speciation. Around 10 000 years ago, gene flow stopped and a period of complete isolation began. Eventually, a hotspot of contemporary hybridization was formed in the unique sympatric population. Occasional sympatry may have helped protect these lineages from extinction in spite of their extremely low diversity.


Assuntos
Arabis/classificação , Espécies em Perigo de Extinção , Especiação Genética , Hibridização Genética , Animais , Teorema de Bayes , Fluxo Gênico , Genética Populacional , Simpatria
2.
Mol Biol Evol ; 38(5): 1820-1836, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480994

RESUMO

During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.


Assuntos
Arabidopsis/genética , Carga Genética , Dispersão Vegetal , Fluxo Gênico , Genes Recessivos , Aptidão Genética , Genoma de Planta , Dinâmica Populacional , Seleção Genética
3.
Ecol Lett ; 23(11): 1643-1653, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32851791

RESUMO

Rapid evolution of traits and of plasticity may enable adaptation to climate change, yet solid experimental evidence under natural conditions is scarce. Here, we imposed rainfall manipulations (+30%, control, -30%) for 10 years on entire natural plant communities in two Eastern Mediterranean sites. Additional sites along a natural rainfall gradient and selection analyses in a greenhouse assessed whether potential responses were adaptive. In both sites, our annual target species Biscutella didyma consistently evolved earlier phenology and higher reproductive allocation under drought. Multiple arguments suggest that this response was adaptive: it aligned with theory, corresponding trait shifts along the natural rainfall gradient, and selection analyses under differential watering in the greenhouse. However, another seven candidate traits did not evolve, and there was little support for evolution of plasticity. Our results provide compelling evidence for rapid adaptive evolution under climate change. Yet, several non-evolving traits may indicate potential constraints to full adaptation.


Assuntos
Mudança Climática , Secas , Adaptação Fisiológica , Plantas
4.
PLoS Genet ; 15(12): e1008512, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860672

RESUMO

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.


Assuntos
Aclimatação , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Locos de Características Quantitativas , Fluxo Gênico , Genética Populacional , Técnicas de Genotipagem , México , Repetições de Microssatélites , Fenótipo , Poaceae/classificação , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
5.
Mol Ecol ; 28(17): 3887-3901, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338892

RESUMO

Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious floodplain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay transfer on genetic diversity also depend on the genetic make-up of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay transfer for habitat restoration and emphasize the importance of prerestoration characterization of microgeographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, that is maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo- and reference-based RAD-seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.


Assuntos
Arabis/genética , Conservação dos Recursos Naturais , Ecossistema , Mapeamento por Restrição , Análise de Sequência de DNA , Variação Genética , Genética Populacional , Hibridização Genética , Recombinação Genética/genética , Especificidade da Espécie
6.
Mol Ecol ; 27(20): 4052-4065, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118161

RESUMO

Stomata control gas exchanges between the plant and the atmosphere. How natural variation in stomata size and density contributes to resolve trade-offs between carbon uptake and water loss in response to local climatic variation is not yet understood. We developed an automated confocal microscopy approach to characterize natural genetic variation in stomatal patterning in 330 fully sequenced Arabidopsis thaliana accessions collected throughout the European range of the species. We compared this to variation in water-use efficiency, measured as carbon isotope discrimination (δ13 C). We detect substantial genetic variation for stomata size and density segregating within Arabidopsis thaliana. A positive correlation between stomata size and δ13 C further suggests that this variation has consequences on water-use efficiency. Genome wide association analyses indicate a complex genetic architecture underlying not only variation in stomatal patterning but also to its covariation with carbon uptake parameters. Yet, we report two novel QTL affecting δ13 C independently of stomatal patterning. This suggests that, in A. thaliana, both morphological and physiological variants contribute to genetic variance in water-use efficiency. Patterns of regional differentiation and covariation with climatic parameters indicate that natural selection has contributed to shape some of this variation, especially in Southern Sweden, where water availability is more limited in spring relative to summer. These conditions are expected to favour the evolution of drought avoidance mechanisms over drought escape strategies.


Assuntos
Arabidopsis/fisiologia , Estômatos de Plantas/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Estudo de Associação Genômica Ampla/métodos , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Locos de Características Quantitativas/genética , Água/metabolismo
7.
Front Microbiol ; 9: 1590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072968

RESUMO

Nitrogen is crucially limiting in ocean surface waters, and its availability varies substantially with coastal regions typically richer in nutrients than open oceans. In a biological stoichiometry framework, a parsimonious strategy of nitrogen allocation predicts nitrogen content of proteins to be lower in communities adapted to open ocean than to coastal regions. To test this hypothesis we have directly interrogated marine microbial communities, using a series of metagenomics datasets with a broad geographical distribution from the Global Ocean Sampling Expedition. Analyzing over 20 million proteins, we document a ubiquitous signal of nitrogen conservation in open ocean communities, both in membrane and non-membrane proteins. Efficient nitrogen allocation is expected to specifically target proteins that are expressed at high rate in response to nitrogen starvation. Furthermore, in order to preserve protein functional efficiency, economic nitrogen allocation is predicted to target primarily the least functionally constrained regions of proteins. Contrasting the NtcA-induced pathway, typically up-regulated in response to nitrogen starvation, with the arginine anabolic pathway, which is instead up-regulated in response to nitrogen abundance, we show how both these predictions are fulfilled. Using evolutionary rates as an informative proxy of functional constraints, we show that variation in nitrogen allocation between open ocean and coastal communities is primarily localized in the least functionally constrained regions of the genes triggered by NtcA. As expected, such a pattern is not detectable in the genes involved in the arginine anabolic pathway. These results directly link environmental nitrogen availability to different adaptive strategies of genome evolution, and emphasize the relevance of the material costs of evolutionary change in natural ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA