Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 185: 110239, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35452905

RESUMO

A 30 MeV, 5-10 kW beam power electron linac is under development at SAMEER for radio-isotope production. An enriched 100Mo target will be irradiated to produce 99Mo which will be eluted to give 99mTc. Two approaches of 100Mo target irradiation -converter and direct are studied using GEANT4 simulations. The main aim of this study is to optimize the 100Mo target geometry for maximum yield. It is observed that direct target irradiation gives better activity as compared to converter target approach.


Assuntos
Elétrons , Aceleradores de Partículas , Simulação por Computador , Radioisótopos
2.
Phys Med ; 64: 166-173, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31515016

RESUMO

Amongst the scientific frameworks powered by the Monte Carlo (MC) toolkit Geant4 (Agostinelli et al., 2003), the TOPAS (Tool for Particle Simulation) (Perl et al., 2012) is one. TOPAS focuses on providing ease of use, and has significant implementation in the radiation oncology space at present. TOPAS functionality extends across the full capacity of Geant4, is freely available to non-profit users, and is being extended into radiobiology via TOPAS-nBIO (Ramos-Mendez et al., 2018). A current "grand problem" in cancer therapy is to convert the dose of treatment from physical dose to biological dose, optimized ultimately to the individual context of administration of treatment. Biology MC calculations are some of the most complex and require significant computational resources. In order to enhance TOPAS's ability to become a critical tool to explore the definition and application of biological dose in radiation therapy, we chose to explore the use of Field Programmable Gate Array (FPGA) chips to speedup the Geant4 calculations at the heart of TOPAS, because this approach called "Reconfigurable Computing" (RC), has proven able to produce significant (around 90x) (Sajish et al., 2012) speed increases in scientific computing. Here, we describe initial steps to port Geant4 and TOPAS to be used on FPGA. We provide performance analysis of the current TOPAS/Geant4 code from an RC implementation perspective. Baseline benchmarks are presented. Achievable performance figures of the subsections of the code on optimal hardware are presented; Aspects of practical implementation of "Monte Carlo on a chip" are also discussed.


Assuntos
Método de Monte Carlo , Radiobiologia/instrumentação , Planejamento da Radioterapia Assistida por Computador , Fatores de Tempo
3.
Phys Rev Lett ; 98(5): 054801, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358866

RESUMO

We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developed induction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA