Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Ecol ; 33(3): e17233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063472

RESUMO

The study of hybrid zones offers important insights into speciation. Earlier studies on hybrid populations of the marine mussel species Mytilus edulis and Mytilus galloprovincialis in SW England provided evidence of admixture but were constrained by the limited number of molecular markers available. We use 57 ancestry-informative SNPs, most of which have been mapped genetically, to provide evidence of distinctive differences between admixed populations in SW England and asymmetrical introgression from M. edulis to M. galloprovincialis. We combine the genetic study with analysis of phenotypic traits of potential ecological and adaptive significance. We demonstrate that hybrid individuals have brown mantle edges unlike the white or purple in the parental species, suggesting allelic or non-allelic genomic interactions. We report differences in gonad development stage between the species consistent with a prezygotic barrier between the species. By incorporating results from publications dating back to 1980, we confirm the long-term stability of the hybrid zone despite higher viability of M. galloprovincialis. This stability coincides with a dramatic change in temperature of UK coastal waters and suggests that these hybrid populations might be resisting the effects of global warming. However, a single SNP locus associated with the Notch transmembrane signalling protein shows a markedly different pattern of variation to the others and might be associated with adaptation of M. galloprovincialis to colder northern temperatures.


Assuntos
Mytilus edulis , Mytilus , Humanos , Animais , Mytilus/genética , Mytilus edulis/genética , Polimorfismo de Nucleotídeo Único , Genoma , Inglaterra
2.
Dis Aquat Organ ; 152: 139-145, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519685

RESUMO

Histopathological analysis of soft-shell clams Mya arenaria collected from 2 northwest Russian locations disclosed high prevalence of 2 pathological gill conditions. One involved the occurrence of more or less extended gill areas in which the branchial filaments showed hyperchromatic (basophilic) epithelium with some hypertrophied nuclei, which were considered presumptive signs of viral infection. Another pathological condition involved abnormal proliferation of the branchial epithelium, which lost the main differential features of the normal branchial epithelium (ciliated and simple cell layer structure), becoming non-ciliated, pseudostratified or stratified hyperchromatic epithelium with abundant mitotic figures and frequent apoptotic cells. The most complex cases involved loss of the normal branchial filament architecture, which was replaced with tumour-like growths consisting of branching, convoluted epithelial projections with a connective stroma. Images suggesting migration (invasion) of cells from the abnormally proliferating epithelium to the subjacent connective tissue, which would involve malignancy, were observed in one individual. The occurrence of both pathological conditions in clams from both locations and their co-occurrence in one clam suggest the possibility of a common, possibly viral, aetiology. Furthermore, the high prevalence of the abnormal proliferative disorder in non-polluted areas suggests an infectious aetiology. Additional studies are needed to assess a viral aetiology for the nuclear hypertrophy and/or the abnormal epithelial proliferation as well as the malignancy of the latter condition.


Assuntos
Mya , Animais , Proliferação de Células , Brânquias , Hipertrofia/veterinária , Federação Russa
3.
Aquat Toxicol ; 248: 106189, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537357

RESUMO

Quantitative proteomic changes in the liver of adult males of Sheepshead minnow (Cyprinodon variegatus) upon exposure to ethinyl estradiol (EE2) were assessed to provide an advanced understanding of the metabolic pathways affected by estrogenic endocrine disruption in marine fish, and to identify potential novel molecular biomarkers for the environmental exposure to estrogens. From a total of 3188 identified protein groups (hereafter proteins), 463 showed a statistically significant difference in their abundance between EE2 treatment and solvent control samples. The most affected biological processes upon EE2 exposure were related to ribosomal biogenesis, protein synthesis and transport of nascent proteins to endoplasmic reticulum, and nuclear mRNA catabolism. Within the group of upregulated proteins, a subset of 14 proteins, involved in egg production (Vitellogenin, Zona Pellucida), peptidase activity (Cathepsine E, peptidase S1, Serine/threonine-protein kinase PRP4 homolog, Isoaspartyl peptidase and Whey acidic protein), and nucleic acid binding (Poly [ADP-ribose] polymerase 14) were significantly upregulated with fold-change values higher than 3. In contrast, Collagen alpha-2, involved in the process of response to steroid hormones, among others, was significantly downregulated (fold change = 0.2). This pattern of alterations in the liver proteome of adult males of C. variegatus can be used to identify promising novel biomarkers for the characterization of exposure of marine fish to estrogens. The Whey acidic protein-like showed the highest upregulation in EE2-exposed individuals (21-fold over controls), suggesting the utility of abundance levels of this protein in male liver as a novel biomarker of xenoestrogen exposure.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Etinilestradiol/toxicidade , Peixes/metabolismo , Peixes Listrados/metabolismo , Fígado , Masculino , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Proteômica , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Curr Zool ; 68(3): 351-359, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35592345

RESUMO

Proteomic analysis was carried out on the Crab (upper-shore) and Wave (lower-shore) ecotypes of Littorina saxatilis from a hybrid zone at Silleiro Cape, Spain. Proteome profiles of individual snails were obtained. Protein expression in F1 hybrid snails bred in the laboratory and snails with intermediate shell phenotypes collected from the mid-shore were compared with Crab and Wave ecotypes using analytical approaches used to study dominance. Multivariate analysis over many protein spots showed that the F1 snails are distinct from both ecotypes but closer to the Wave ecotype. The intermediate snails are highly variable, some closer to the Crab and others to the Wave ecotype. Considered on a protein by protein basis, some proteins are significantly closer in expression to the Crab and others to the Wave ecotype for both F1 and intermediate snails. Furthermore, a significant majority of proteins were closer in expression to the Wave ecotype for the F1, consistent with the multivariate analysis. No such significant majority toward either the Crab or Wave ecotype was observed for the intermediate snails. The closer similarity of F1 and Wave ecotype expression patterns could be the result of similar selective pressures in the similar mid-shore and low-shore environments. For a significantly larger number of proteins, intermediate snails were closer in expression to the ecotype having the lower expression, for both Crab and Wave ecotypes. This is somewhat unexpected as lower expression might be expected to be an indication of impairment of function and lower fitness. Proteomic analysis could be important for the identification of candidate proteins useful for gaining improved understanding of adaptation and barriers to gene flow in hybrid zones.

5.
Environ Pollut ; 300: 118936, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124124

RESUMO

The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 µg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.


Assuntos
Disruptores Endócrinos , Peixes Listrados , Animais , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Feminino , Masculino , Fenóis , Proteoma , Proteômica
6.
Mar Environ Res ; 168: 105315, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33853012

RESUMO

Vitellogenin (Vtg), a large multidomain protein precursor of egg-yolk proteins, is used as an endocrine disruption biomarker in fish, and in the last decades, its use has been extended to invertebrates like mollusks. However, it remains unclear whether invertebrate endocrine system produces Vtg in response to estrogens, like it occurs in oviparous vertebrates. In a previous study, no evidence of induction of Vtg expression at protein level was found in gonads of the marine mussel Mytilus galloprovincialis after exposure to the estrogenic chemical 17α-ethinylestradiol (EE2). In the present follow-up study, it was investigated whether there is any effect of EE2 on Vtg abundance at transcriptional level in M. galloprovincialis gonads. To this aim, RT-qPCR analysis targeting three different domains of Vtg transcript was performed on gonads of mussels that were exposed either 4 or 24 days to 100 ng/L EE2. In addition, several reference genes were analysed and a selection of these for potential use in further RT-qPCR analyses on mussel male and female gonads is provided. Results showed higher expression in females than in males for the three analysed Vtg domains, and no evidence of Vtg mRNA induction due to EE2 either in females or males. The present results, together with those obtained from previous analysis at protein level, support that Vtg is not an adequate biomarker for xenoestrogenicity in marine mussels. Additionally, nucleotide sequences of Vtg transcripts of three closely-related species from Mytilus edulis complex (M. galloprovincialis, M. edulis and M. trossulus) are provided and compared with Vtg sequences from other mollusk species to assess the level of conservation and evolutionary relationships among species.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Etinilestradiol/toxicidade , Feminino , Seguimentos , Expressão Gênica , Masculino , Mytilus/genética , Vitelogeninas/genética , Poluentes Químicos da Água/toxicidade
7.
Methods Mol Biol ; 2259: 77-102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687710

RESUMO

During the last decade, we have witnessed outstanding advances in proteomics led mostly by great technological improvements in mass spectrometry field allowing high-throughput production of high-quality data used for massive protein identification and quantification. From a practical viewpoint, these advances have been mainly exploited in research projects involving model organisms with abundant genomic and proteomic information available in public databases. However, there is a growing number of organisms of high interest in different disciplines, such as ecological, biotechnological, and evolutionary research, yet poorly represented in these databases. Important advances in massive parallel sequencing technology and easy accessibility of this technology to many research laboratories have made nowadays possible to produce customized genomic and proteomic databases of any organism. Along this line, the use of proteogenomic approaches by combining in the same analysis the data obtained from different omic levels has emerged as a very useful and powerful strategy to run shotgun proteomic experiments specially focused on non-model organisms. In this chapter, we provide detailed procedures to undertake shotgun quantitative proteomic experiments following either a label-free or an isobaric labeling approach in non-model organisms, emphasizing also a few key aspects related to experimental design and data analysis.


Assuntos
Proteoma/análise , Proteômica/métodos , Animais , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Proteoma/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
8.
Aquat Toxicol ; 230: 105688, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33316748

RESUMO

Organophosphate flame retardants (OPFRs) are (re-)emergent environmental pollutants increasingly being used because of the restriction of other flame retardants. The chlorinated OPFR, tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is among those of highest environmental concern, but its potential effects in the marine environment have rarely been investigated. We exposed a widely used sentinel marine mussel species, Mytilus galloprovincialis, to 10 µg L-1 of TDCPP during 28 days and studied: (i) the kinetics of bioaccumulation and elimination of the compound, (ii) the effect on two molecular biomarkers, glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities, and (iii) proteomic alterations in the gills, following an isobaric labeling quantitative shotgun proteomic approach, at two exposure times (7 and 28 days). Uptake and elimination of TDCPP by mussels were very fast, and the bioconcentration factor of this compound in mussels was 147 L kgww-1, confirming that this compound is not very bioaccumulative, as predicted by its chemical properties. GST activity was not affected by TDCPP exposure, but AChE activity was inhibited by TDCPP at both 7 and 28 days of exposure. Proteomic analysis revealed subtle effects of TDCPP in mussel gills, since few proteins (less than 2 % of the analysed proteome) were significantly affected by TDCPP, and effect sizes were low. The most relevant effects detected were the up-regulation of epimerase family protein SDR39U1, an enzyme that could be involved in detoxification processes, at both exposure times, and the down-regulation of receptor-type tyrosine-protein phosphatase N2-like (PTPRN2) after 7 days of exposure, which is involved in neurotransmitter secretion and might be related to the neurotoxicity described for this compound. Exposure time rather than TDCPP exposure was the most important driver of protein abundance changes, with 33 % of the proteome being affected by this factor, suggesting that stress caused by laboratory conditions could be an important confounding factor that needs to be controlled in similar ecotoxicology studies. Proteomic data are available via ProteomeXchange with identifier PXD019720.


Assuntos
Bioacumulação/efeitos dos fármacos , Retardadores de Chama/toxicidade , Brânquias/metabolismo , Mytilus/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Retardadores de Chama/metabolismo , Brânquias/efeitos dos fármacos , Glutationa Transferase/metabolismo , Cinética , Modelos Biológicos , Mytilus/metabolismo , Compostos Organofosforados/metabolismo , Proteômica , Poluentes Químicos da Água/metabolismo
9.
Sci Total Environ ; 721: 137638, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169639

RESUMO

A wide variety of endocrine disrupting chemicals reach the marine environment and can cause harmful effects in different marine organisms. Vitellogenin (Vtg), the egg-yolk precursor, is a commonly used endocrine disruption biomarker in fish and more recently in marine invertebrates under the assumption of high expected similarities in the endocrine system of vertebrates and invertebrates. However, this assumption has been recently questioned. The results from previous studies focused on bivalve molluscs showed that Vtg induction could be misleading because of the use of either non-robust or indirect techniques to measure Vtg. In this study, mussels (Mytilus galloprovincialis) were exposed to either 10 or 100 ng/L of the synthetic hormone 17α-ethinylestradiol (EE2) at different exposure times (4 and 24 days) and under different feeding regimes (representing different energy balances), and Vtg levels in both male and female mussel gonads were quantified by label free shotgun LC-MS/MS proteomic analysis. Vtg protein was not detected in male gonads. In female gonads, Vtg levels were not significantly affected by EE2 at any exposure time or EE2 concentration tested, whereas a significant correlation was found between the degree of maturation of the gonad and Vtg levels in females. Results obtained in the present study critically question the use of Vtg as a biomarker of endocrine disruption in marine mussels, and show that the degree of maturation of the gonad can be an important confounding factor in the attempts to evaluate estrogenic effects through Vtg measurement in mussel gonads.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Cromatografia Líquida , Etinilestradiol , Feminino , Masculino , Proteômica , Espectrometria de Massas em Tandem , Vitelogeninas
10.
J Proteomics ; 192: 169-187, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30189323

RESUMO

Speciation mechanisms in marine organisms have attracted great interest because of the apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine mussels of the Mytilus edulis species complex provide a good model to study mechanisms underlying species formation. They hybridise extensively at many localities and both pre- and postzygotic isolating mechanisms may be operating. Mussels have external fertilisation and sperm cells should show specific adaptations for survival and successful fertilisation. Sperm thus represent key targets in investigations of the molecular mechanisms underlying reproductive isolation. We undertook a deep transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a common environment. We provide evidence of extensive expression differences between the two mussel species, and general agreement between the transcriptomic and proteomic results in the direction of expression differences between species. Differential expression is marked for mitochondrial genes and for those involved in spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm capacitation, ATP reserves and ROS production. Proteins and their corresponding genes might thus be good targets in further genomic analysis of reproductive barriers between these closely related species. SIGNIFICANCE: Model systems for the study of fertilization include marine invertebrates with external fertilisation, such as abalones, sea urchins and mussels, because of the ease with which large quantities of gametes released into seawater can be collected after induced spawning. Unlike abalones and sea urchins, hybridisation has been reported between mussels of different Mytilus spp., which thus makes them very appealing for the study of reproductive isolation at both pre- and postzygotic levels. There is a lack of empirical proteomic studies on sperm samples comparing different Mytilus species, which could help to advance this study. A comparative analysis of sperm proteomes across different taxa may provide important insights into the fundamental molecular processes and mechanisms involved in reproductive isolation. It might also contribute to a better understanding of sperm function and of the adaptive evolution of sperm proteins in different taxa. There is now growing evidence from genomics studies that multiple protein complexes and many individual proteins might have important functions in sperm biology and the fertilisation process. From an applied perspective, the identification of sperm-specific proteins could also contribute to the improved understanding of fertility problems and as targets for fertility control.


Assuntos
Mytilus edulis/metabolismo , Proteoma/metabolismo , Espermatozoides/metabolismo , Animais , Masculino , Mytilus edulis/genética , Proteoma/genética , Análise de Sequência de RNA , Especificidade da Espécie
11.
Data Brief ; 21: 167-175, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364736

RESUMO

The mussels Mytilus edulis and Mytilus galloprovincialis are marine organisms with external fertilization able to hybridize where their distributions overlap allowing the study of reproductive isolation mechanisms in nature. We provide raw data of a transcriptomic analysis of mature male gonads from these two Mytilus spp. using NGS (Illumina) technology and a preliminary list of transcript that were functionally annotated showing species-specific differential expression. A shortlist including some of these genes and their corresponding proteins have been thoroughly analysed and discussed in Romero et al. (2018, Submitted for publication).

12.
Genome Biol Evol ; 9(12): 3265-3281, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149282

RESUMO

Many bivalve species have two types of mitochondrial DNA passed independently through the female line (F genome) and male line (M genome). Here we study the cytochrome oxidase I protein in such bivalve species and provide evidence for differences between the F and M proteins in amino acid property values, particularly relating to hydrophobicity and helicity. The magnitude of these differences varies between different regions of the protein and the change from the ancestor is most marked in the M protein. The observed changes occur in parallel and in the same direction in the different species studied. Two possible causes are considered, first relaxation of purifying selection with drift and second positive selection. These may operate in different ways in different regions of the protein. Many different amino acid substitutions contribute in a small way to the observed variation, but substitutions involving alanine and serine have a quantitatively large effect. Some of these substitutions are potential targets for phosphorylation and some are close to residues of functional importance in the catalytic mechanism. We propose that the observed changes in the F and M proteins might contribute to functional differences between them relating to ATP production and mitochondrial membrane potential with implications for sperm function.


Assuntos
Bivalves/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Evolução Molecular , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Bivalves/citologia , Bivalves/enzimologia , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Padrões de Herança , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Filogenia , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas , Análise de Sequência de DNA
13.
Environ Sci Technol ; 51(13): 7572-7580, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28562021

RESUMO

Vitellogenin, the egg yolk precursor, is a well-known biomarker of endocrine disruption in oviparous vertebrates. In invertebrates, such as bivalves, it has been used in the last 10 years for the same purpose, despite the limited knowledge of invertebrate endocrinology. In bivalves, vitellogenin levels are usually estimated using an indirect technique, alkali labile phosphate (ALP), that assumes that vitellogenin is the most abundant phosphorylated protein in the analyzed tissue. In this study, we applied shotgun proteomics for the identification and quantification of vitellogenin in marine mussel gonads and compared the results with those obtained with the ALP method. The proteomic analysis revealed that vitellogenin is only detected in female gonads with expression levels that are rather variable among female mussels at different stages of gonad development. ALP analysis, on the contrary, detected similar amounts of phosphorylated proteins regardless of sex or gonad development stage. These results show evidence that the ALP method is not providing reliable information about Vtg levels, at least in marine mussel gonads. ALP is not a good proxy to assess Vtg levels in marine mussels, and careful verification of the adequacy of the procedure should be done before ALP is further assumed as a proxy of Vtg in other bivalve mollusks.


Assuntos
Mytilus , Proteômica , Vitelogeninas/análise , Álcalis , Animais , Feminino , Fosfatos , Poluentes Químicos da Água
14.
Curr Zool ; 63(5): 487-493, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29492008

RESUMO

Rocky intertidal organisms are commonly exposed to environmental gradients, promoting adaptations to these conditions. Emersion time varies along the intertidal range and in the supralittoral zone is frequently larger than a single tidal cycle, even lasting for weeks. The planktonic-dispersing gastropod Melarhaphe neritoides is a common species of the high shore, adapted to reduce water loss in order to survive during long-term emersion. In this study, we investigated the molecular response, at the proteome level, of M. neritoides collected in high-shore tide pools to a series of emersion periods, from 8 to 24 days, in laboratory conditions. We compared this response to individuals maintained submerged during this period, because this was their original habitat. We also included a reversion treatment in the study, in which emersed individuals were returned to the submerged conditions. Although we detected an increase in overall protein concentration with longer emersion periods, contrary to general expectation, the two dimensional electrophoresis (2DE)-based proteomic analysis did not show significant differences between the treatments at the level of individual protein spots, even after an emersion period of 24 days. Our results suggest that the metabolism remains unaltered independent of the treatment carried out or the changes are very subtle and therefore difficult to detect with our experimental design. We conclude that M. neritoides could be equally adapted to emersion and submersion without drastic physiological changes.

16.
Proteomics ; 15(23-24): 3993-4006, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449374

RESUMO

The mussel Mytilus galloprovincialis is one of the most important marine resources for aquaculture in Europe, and Galicia (NW Spain) is the EU's leading region for production. Variation in environmental and ecological factors exists in Northern and Southern estuaries of this region, and natural selection could have modulated genetic variation among populations with adaptation to local conditions as the driving force. Results from a previous genetic study using neutral markers suggested subtle genetic differentiation between mussel populations from both estuarine areas. In this new study, mussel samples from Northern and Southern estuaries were brought into a common environment to test for proteome differences due to genetic and permanent non-genetic effects in populations from both estuarine areas, using both foot and mantle border tissues. Because the sex of the mussels was determined through histological tests, sex-specific effects were also examined. Evidence of subtle differences in the foot proteome, dependent on mussel sex, were detected between populations from both estuaries. These differences were more marked for female samples. No evidence of proteome differences was found for the factors estuaries and sex in mantle border tissue. Candidate proteins with a potential role in local adaptation were identified and point to molecular functions that might be involved in responses to different stressors.


Assuntos
Mytilus/metabolismo , Proteoma/metabolismo , Animais , Ecologia , Masculino
17.
J Proteomics ; 105: 151-63, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24370682

RESUMO

The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The common octopus Octopus vulgaris has a high economic relevance and potential for aquaculture. However, disease outbreaks provoke serious reductions in production with potentially severe economic losses. In this study, a proteomic approach is used to analyze the immune response of O. vulgaris against the coccidia Aggregata octopiana, a gastrointestinal parasite which impairs the cephalopod nutritional status. The hemocytes and plasma proteomes were compared by 2-DE between sick and healthy octopus. The identities of 12 differentially expressed spots and other 27 spots without significant alteration from hemocytes, and 5 spots from plasma, were determined by mass spectrometry analysis aided by a six reading-frame translation of an octopus hemocyte RNA-seq database and also public databases. Principal component analysis pointed to 7 proteins from hemocytes as the major contributors to the overall difference between levels of infection and so could be considered as potential biomarkers. Particularly, filamin, fascin and peroxiredoxin are highlighted because of their implication in octopus immune defense activity. From the octopus plasma, hemocyanin was identified. This work represents a first step forward in order to characterize the protein profile of O. vulgaris hemolymph, providing important information for subsequent studies of the octopus immune system at molecular level and also to the understanding of the basis of octopus tolerance-resistance to A. octopiana. BIOLOGICAL SIGNIFICANCE: The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The study herein presented is focused to the comprehension of the octopus immune defense against a parasite infection. Particularly, it is centered in the host-parasite relationship developed between the octopus and the protozoan A. octopiana, which induces severe gastrointestinal injuries in octopus that produce a malabsorption syndrome. The common octopus is a commercially important species with a high potential for aquaculture in semi-open systems, and this pathology reduces the condition of the octopus populations on-growing in open-water systems resulting in important economical loses. This is the first proteomic approach developed on this host-parasite relationship, and therefore, the contribution of this work goes from i) ecological, since this particular relationship is tending to be established as a model of host-parasite interaction in natural populations; ii) evolutionary, due to the characterization of immune molecules that could contribute to understand the functioning of the immune defense in these highly evolved mollusks; and iii) to economical view. The results of this study provide an overview of the octopus hemolymph proteome. Furthermore, proteins influenced by the level of infection and implicated in the octopus cellular response are also showed. Consequently, a set of biomarkers for disease resistance is suggested for further research that could be valuable for the improvement of the octopus culture, taken into account their high economical value, the declining of landings and the need for the diversification of reared species in order to ensure the growth of the aquaculture activity. Although cephalopods are model species for biomedical studies and possess potential in aquaculture, their genomes have not been sequenced yet, which limits the application of genomic data to research important biological processes. Similarly, the octopus proteome, like other non-model organisms, is poorly represented in public databases. Most of the proteins were identified from an octopus' hemocyte RNA-seq database that we have performed, which will be the object of another manuscript in preparation. Therefore, the need to increase molecular data from non-model organisms is herein highlighted. Particularly, here is encouraged to expand the knowledge of the genomic of cephalopods in order to increase successful protein identifications. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Assuntos
Coccídios , Coccidiose/metabolismo , Hemolinfa/metabolismo , Octopodiformes , Proteoma/metabolismo , Proteômica/métodos , Animais , Coccidiose/veterinária , Hemolinfa/parasitologia , Octopodiformes/metabolismo , Octopodiformes/parasitologia
18.
Mol Cell Proteomics ; 12(11): 3068-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23869045

RESUMO

Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mytilus edulis/genética , Mytilus edulis/metabolismo , Óvulo/metabolismo , Animais , Eletroforese em Gel Bidimensional , Feminino , Genoma Mitocondrial , Masculino , Modelos Genéticos , Proteoma/genética , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Caracteres Sexuais , Processos de Determinação Sexual , Espermatozoides/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinação
19.
Proteomics ; 12(12): 1949-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623270

RESUMO

Proteomic analysis on sperm has been restricted to only a few model organisms. We present here a 2DE PAGE proteome map of sperm cells from a nonmodel organism, the marine mussel Mytilus edulis, a free-spawning marine invertebrate with external fertilization. Ninety-six protein spots showing high expression were selected and of these 77 were successfully identified by nESI-MS analysis. Many of the identifications are relevant to sperm cell physiology and mtDNA functioning. The results and proteomics approach used are discussed in relation to their potential for advancing understanding of the unusual system of mtDNA inheritance described in Mytilus spp., and for the testing of evolutionary hypotheses pertaining to the role of fertilization in the speciation process.


Assuntos
Mytilus edulis/química , Proteoma/análise , Espermatozoides/química , Animais , Eletroforese em Gel Bidimensional , Masculino , Mytilus edulis/metabolismo , Proteoma/metabolismo , Proteínas de Plasma Seminal , Espectrometria de Massas por Ionização por Electrospray , Espermatozoides/metabolismo
20.
Mol Ecol ; 21(5): 1060-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22268916

RESUMO

The study of the proteome (proteomics), which includes the dynamics of protein expression, regulation, interactions and its function, has played a less prominent role in evolutionary and ecological investigations in comparison with the study of the genome and transcriptome. There are, however, a number of arguments suggesting that this situation should change. First, the proteome is closer to the phenotype than the genome or the transcriptome, and as such may be more directly responsive to natural selection, and thus closely linked to adaptation. Second, there is evidence of a low correlation between protein and transcript expression levels across genes in many different organisms. Finally, there have been some recent important technological improvements in proteomics methods that make them feasible, practical and useful to address a wide range of evolutionary questions even in nonmodel organisms. The different proteomic methods, their limitations and problems when interpreting empirical data are described and discussed. In addition, the proteomic literature pertaining to evolutionary ecology is reviewed with examples, and potential applications of proteomics in a variety of evolutionary contexts are outlined. New proteomic research trends such as the study of posttranslational modifications and protein-protein interactions, as well as the combined use of the different -omics approaches, are discussed in relation to the development of a more functional and integrated perspective, needed for achieving a more comprehensive knowledge of evolutionary change.


Assuntos
Evolução Biológica , Ecologia/métodos , Genótipo , Fenótipo , Proteômica/métodos , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA