Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557903

RESUMO

Gallic acid is a phenolic acid present in various plants, nuts, and fruits. It is well known for its anti-oxidative and anti-inflammatory properties. The phenethyl ester of gallic acid (PEGA) was synthesized with the aim of increasing the bioavailability of gallic acid, and thus its pharmacological potential. Here, the effects of PEGA on encephalitogenic cells were examined, and PEGA was found to modulate the inflammatory activities of T cells and macrophages/microglia. Specifically, PEGA reduced the release of interleukin (IL)-17 and interferon (IFN)-γ from T cells, as well as NO, and IL-6 from macrophages/microglia. Importantly, PEGA ameliorated experimental autoimmune encephalomyelitis, an animal model of chronic inflammatory disease of the central nervous system (CNS)-multiple sclerosis. Thus, PEGA is a potent anti-inflammatory compound with a perspective to be further explored in the context of CNS autoimmunity and other chronic inflammatory disorders.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Sistema Nervoso Central , Microglia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL
2.
Immunol Lett ; 251-252: 9-19, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183900

RESUMO

Rosmarinic acid is a polyphenolic compound, abundantly present in herbs of the Lamiaceae family. The aim of the study was to evaluate the immunomodulatory properties of a recently developed phenethyl ester derivative of rosmarinic acid (PERA), with enhanced ability of diffusion through biological membranes, in an animal model of the central nervous system (CNS) autoimmunity. To this end, experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis was used. Daily subcutaneous administration of PERA (30 mg/kg) from day 7 to day 22 after immunization successfully ameliorated EAE induced in Dark Agouti rats, shortening the disease duration and reducing maximal, cumulative and mean clinical score. PERA efficiently reduced production of major encephalitogenic cytokines, interferon (IFN)-γ and interleukin (IL)-17, in immune cells from the CNS or the lymph nodes draining the site of immunization of EAE rats, as well as in CD4+ T cells purified from the lymph nodes. Also, PERA inhibited NO production in the CNS and the lymph nodes, as well as in macrophages and microglial cells. Finally, microglial ability to produce pro-inflammatory cytokines IL-6, and tumor necrosis factor (TNF) were also reduced by PERA. Our results clearly imply that PERA possesses anti-encephalitogenic properties. Thus, further studies on the relevance of the observed effects for the therapy of multiple sclerosis are warranted.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ratos , Animais , Camundongos , Ésteres/uso terapêutico , Citocinas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Ácido Rosmarínico
3.
Inflamm Res ; 71(2): 169-182, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999919

RESUMO

Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Inflamação/tratamento farmacológico , Piruvatos/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Células Mieloides/efeitos dos fármacos , Piruvatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
4.
J Neuroimmunol ; 354: 577547, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765502

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is classically induced with complete Freund's adjuvant (CFA). The immune response against CFA has a confounding influence on the translational capacity of EAE as a multiple sclerosis model. Here, we compare clinical, cellular and molecular properties between syngeneic spinal cord homogenate (SCH)- and SCH + CFA-immunized Dark Agouti rats. EAE signs were observed earlier and the cumulative clinical score was higher without CFA. Also, a higher number of immune cells infiltrates in the spinal cords was noticed at the peak of EAE without CFA. High spinal cord abundance of CD8+CD11bc+MHC class II+ cells was detected in SCH-immunized rats. Myelin basic protein -specific response can be elicited in the cells from the lymph nodes draining the site of SCH immunization. This CFA-free EAE is a reliable multiple sclerosis model.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Imunização/métodos , Animais , Feminino , Adjuvante de Freund , Masculino , Ratos , Medula Espinal/imunologia
5.
Antioxid Redox Signal ; 34(5): 364-382, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32458699

RESUMO

Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.


Assuntos
Autoimunidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Tolerância Imunológica , Oxirredução , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/terapia , Suscetibilidade a Doenças , Humanos , Ativação Linfocitária/imunologia , Espécies Reativas de Oxigênio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-32888286

RESUMO

BACKGROUND: Benfotiamine is a synthetic liposoluble derivative of vitamin B1 that has been shown to have anti-inflammatory properties. OBJECTIVE: To study the effects of benfotiamine on dendritic cells. METHODS: Dendritic cells were obtained from murine bone marrow precursor cells in the presence of GM-CSF. Benfotiamine was applied to the cell culture during the process of bone marrow cell differentiation into dendritic cells. Dendritic cells were stimulated with lipopolysaccharide (LPS) and expression of MHC class II molecules and CD86 was determined by flow cytometry, while levels of tumor necrosis factor (TNF) and interleukin (IL)-1ß in cell culture supernatants were measured by ELISA. F-Actin, NF-κB and Nrf2 were visualized by immunofluorescent staining and microscopy. RESULTS: Benfotiamine potently reduced LPS-induced expression of MHC class II molecules and CD86, in addition to suppressing the release of pro-inflammatory cytokines TNF and IL-1ß. It also prevented LPS-imposed morphological changes of dendritic cells, i.e. enlargement and intensified protrusions. The effects were paralleled with the reduction of NF-κB translocation to the nucleus, but not of Nrf2 activation inhibition. CONCLUSION: Having in mind the importance of dendritic cells for the configuration of the immune response, our results imply that benfotiamine has the ability to regulate the immune response through inhibition of inflammatory properties of dendritic cells.


Assuntos
Anti-Inflamatórios/farmacologia , Células Dendríticas/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Tiamina/análogos & derivados , Animais , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Tiamina/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Immunol ; 10: 157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792716

RESUMO

Dendritic cells (DC) are professional antigen presenting cells that have a key role in shaping the immune response. Tolerogenic DC (tolDC) have immuno-regulatory properties and they are a promising prospective therapy for multiple sclerosis and other autoimmune diseases. Ethyl pyruvate (EP) is a redox analog of dimethyl fumarate (Tecfidera), a drug for multiple sclerosis treatment. We have recently shown that EP ameliorates experimental autoimmune encephalomyelitis, a multiple sclerosis murine model. Here, we expanded our study to its tolerogenic effects on DC. Phenotypic analysis has shown that DC obtained from mice or humans reduce expression of molecules required for T cell activation such as CD86, CD83, and HLA-DR under the influence of EP, while CD11c expression and viability of DC are not affected. Furthermore, EP-treated DC restrain proliferation and modulate cytokine production of allogeneic lymphocytes. These results demonstrate that EP has the ability to direct DC toward tolDC.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Tolerância Imunológica/efeitos dos fármacos , Piruvatos/farmacologia , Animais , Comunicação Celular , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Imunomodulação/efeitos dos fármacos , Isoantígenos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Piruvatos/imunologia , Piruvatos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Immunobiology ; 224(3): 470-476, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765133

RESUMO

Dendritic cells (DC) are responsible for the initiation and shaping of the adaptive immune response and are in the focus of autoimmunity research. We were interested in comparison of DC obtained from autoimmunity-prone Dark Agouti (DA) rats and autoimmunity-resistant Albino Oxford (AO) rats. DC were generated from bone marrow precursors and matured (mDC) by lipopolysaccharide. Tolerogenic DC (tolDC) obtained by vitamin D3 treatment were studied in parallel. Profile of cytokine production was different in AO and DA mDC and tolDC. Expression of MHC class II molecules and CD86 were higher in DA DC, while vitamin D3 reduced their expression in dendritic cells of both strains. Allogeneic proliferation of CD4+ T cells was reduced by AO tolDC, but not with DA tolDC in comparison to respective mDC. Finally, expression of various genes identified as differentially expressed in human mDC and tolDC was also analyzed in AO and DA DC. Again, AO and DA DC differed in the expression of the analyzed genes. To conclude, AO and DA DC differ in production of cytokines, expression of antigen presentation-related molecules and in regulation of CD4+ T proliferation. The difference is valuable for understanding the divergence of the strains in their susceptibility to autoimmunity.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Animais , Apresentação de Antígeno , Autoimunidade , Diferenciação Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Resistência à Doença , Suscetibilidade a Doenças , Feminino , Patrimônio Genético , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Ratos , Ratos Endogâmicos , Transcriptoma
9.
J Cell Physiol ; 233(6): 4990-5001, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215791

RESUMO

Particulate adjuvants have shown increasing promise as effective, safe, and durable agents for the stimulation of immunity, or alternatively, the suppression of autoimmunity. Here we examined the potential of the adjuvant carbonyl iron (CI) for the modulation of organ-specific autoimmune disease-type 1 diabetes (T1D). T1D was induced by multiple low doses of streptozotocin (MLDS) that initiates beta cell death and triggers immune cell infiltration into the pancreatic islets. The results of this study indicate that the single in vivo application of CI to MLDS-treated DA rats, CBA/H mice, or C57BL/6 mice successfully counteracted the development of insulitis and hyperglycemia. The protective action was obtained either when CI was applied 7 days before, simultaneously with the first dose of streptozotocin, or 1 day after MLDS treatment. Ex vivo cell analysis of C57BL/6 mice showed that CI treatment reduced the proportion of proinflammatory F4/80+ CD40+ M1 macrophages and activated T lymphocytes in the spleen. Moreover, the treatment down-regulated the number of inflammatory CD4+ IFN-γ+ cells in pancreatic lymph nodes, Peyer's patches, and pancreas-infiltrating mononuclear cells, while simultaneously potentiating proportion of CD4+ IL17+ cells. The regulatory arm of the immune system represented by CD3+ NK1.1+ (NKT) and CD4+ CD25+ FoxP3+ regulatory T cells was potentiated after CI treatment. In vitro analysis showed that CI down-regulated CD40 and CD80 expression on dendritic cells thus probably interfering with their antigen-presenting ability. In conclusion, particulate adjuvant CI seems to suppress the activation of the innate immune response, which further affects the adaptive immune response directed toward pancreatic beta cells.


Assuntos
Adjuvantes Imunológicos/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 1/prevenção & controle , Hipoglicemiantes/farmacologia , Imunidade Inata/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Compostos de Ferro/farmacologia , Estreptozocina , Animais , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/imunologia , Ratos , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
10.
Biomed Pharmacother ; 96: 78-85, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965011

RESUMO

Ethyl pyruvate is a redox analogue of dimethyl fumarate (Tecfidera), a drug for multiple sclerosis treatment. We have recently shown that ethyl pyruvate ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. It affects encephalitogenic T cells and macrophages in vitro, as well as in lymph nodes draining the site of encephalitogenic immunization and within the central nervous system (CNS). Here, in vivo effects of ethyl pyruvate on EAE are thoroughly investigated in the CNS and within the gut associated lymphoid tissue. Ethyl pyruvate reduced infiltrates within the CNS and number of activated macrophages/microglia (ED1+/Iba1+) and proliferating astrocytes (GFAP+). Furthermore, it reduced expression of HMGB1 in activated macrophages/microglia. It also reduced number of activated T cells and antigen-presenting cells and expression of Th1/Th17-related molecules in mesenteric lymph nodes and Peyer's patches. These results contribute to our understanding of anti-encephalitogenic effects of ethyl pyruvate as they provide evidence of its effects within the CNS and imply that these effects are related to reduction of inflammatory immune response in gut associated lymphoid tissue.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Trato Gastrointestinal/efeitos dos fármacos , Piruvatos/uso terapêutico , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/biossíntese , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Linfonodos/patologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/patologia , Piruvatos/farmacologia , Ratos , Resultado do Tratamento
11.
J Agric Food Chem ; 64(24): 4900-7, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27225664

RESUMO

Cucurbitacin E (CucE) is a highly oxidized steroid consisting of a tetracyclic triterpene. It is a member of a Cucurbitacin family of biomolecules that are predominantly found in Cucurbitaceae plants. CucE has already been identified as a potent anti-inflammatory compound. Here, its effects on CD4(+) T helper (Th) cells and macrophages, as the major encephalitogenic cells in the autoimmunity of the central nervous system, were investigated. Production of major pathogenic Th cell cytokines: interferon-gamma and interleukin-17 were inhibited under the influence of CucE. The effects of CucE on CD4(+) T cells were mediated through the modulation of aryl hydrocarbon receptor, STAT3, NFκB, p38 MAPK, and miR-146 signaling. Further, production of nitric oxide and reactive oxygen species, as well as phagocytic ability, were inhibited in macrophages treated with CucE. These results imply that CucE possesses powerful antiencephalitogenic activity.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Peixe-Zebra
12.
PeerJ ; 3: e1189, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413432

RESUMO

Infiltration of macrophages into the central nervous system and activation of microglia are hallmarks of multiple sclerosis and its animal model-experimental autoimmune encephalomyelitis (EAE). Cell death in EAE has been demonstrated as an essential mechanism in the local regulation of the inflammatory reaction, but also as one of the major factors contributing to the destruction of the nervous tissue. The focus of this study was on detection of cell death among ED1(+) cells (macrophages/activated microglia) in the spinal cord of Dark Agouti rats at the peak of EAE. Cell death was assessed using the TUNEL assay and immunostaining for cleaved caspase 3, as markers for cell death in general and "classical" apoptosis, respectively. Major infiltrates of immune cells were detected both in white matter and gray matter of spinal cords in rats at the disease peak. ED1, TUNEL, and caspase 3 positive cells were detected within, but also outside the infiltrates. There were more dying ED1(+) cells in white matter than in gray matter, both in the general population and in infiltrated regions. The observed discrepancy in the proportion of dying ED1(+) cells in spinal cord gray and white matter indicated that in EAE rat macrophages/microglia within gray matter are less prone to cell death induction. This is of special interest in the context of the increasingly appreciated contribution of spinal cord gray matter inflammation to multiple sclerosis pathogenesis. Our findings suggest that activated macrophages/microglia of gray matter are less susceptible to cell death induction. Alternatively, it can be assumed that intrinsic cell death-inductive mechanisms of nervous tissue differ in white and gray matter. Thus, further research on the gray matter macrophages/microglia cell death during EAE is warranted. They should be aimed at identification of the reasons for the observed differences and finding suitable ways to stimulate gray matter activated macrophages/microglia death.

13.
Biomed Pharmacother ; 72: 11-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26054669

RESUMO

Ethyl pyruvate (EP) has been increasingly appreciated as an anti-inflammatory and neuroprotective agent with potent pharmacological properties relevant for treatment of various CNS disorders. Microglial cells seem to be particularly sensitive to its effects. In this study, microglial cells were exposed to EP for relatively short periods (10-120min) and inflammatory properties of the cells were determined after 24h of cultivation. Application of EP in the short-term periods inhibited production of interleukin-6, tumor necrosis factor and nitric oxide in microglial cells. At the same time, the effects on cell viability, reactive oxygen species generation and expression of F4/80 and CD40 of microglial cells were minor. NFκB activation was not affected by EP in the cells during the short exposures, thus implying that the observed effect of EP on cytokine and nitric oxide generation was performed in NFκB independent way. Importantly, effects of the short term EP treatment on microglial cells were detected by a real time cell analysis, as well. The observed ability of EP to affect microglial cell function after relatively short time of exposure is relevant for its therapeutic potential against inflammatory disorders of the CNS.


Assuntos
Anti-Inflamatórios/farmacologia , Microglia/metabolismo , Piruvatos/farmacologia , Animais , Antígenos CD40/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Interleucina-6/biossíntese , Camundongos , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese
14.
J Immunol ; 194(6): 2493-503, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25681336

RESUMO

Dimethyl fumarate (DMF), a new drug for multiple sclerosis (MS) treatment, acts against neuroinflammation via mechanisms that are triggered by adduct formation with thiol redox switches. Ethyl pyruvate (EP), an off-the-shelf agent, appears to be a redox analog of DMF, but its immunomodulatory properties have not been put into the context of MS therapy. In this article, we examined and compared the effects of EP and DMF on MS-relevant activity/functions of T cells, macrophages, microglia, and astrocytes. EP efficiently suppressed the release of MS signature cytokines, IFN-γ and IL-17, from human PBMCs. Furthermore, the production of these cytokines was notably decreased in encephalitogenic T cells after in vivo application of EP to rats. Production of two other proinflammatory cytokines, IL-6 and TNF, and NO was suppressed by EP in macrophages and microglia. Reactive oxygen species production in macrophages, microglia activation, and the development of Ag-presenting phenotype in microglia and macrophages were constrained by EP. The release of IL-6 was reduced in astrocytes. Finally, EP inhibited the activation of transcription factor NF-κB in microglia and astrocytes. Most of these effects were also found for DMF, implying that EP and DMF share common targets and mechanisms of action. Importantly, EP had in vivo impact on experimental autoimmune encephalomyelitis, an animal model of MS. Treatment with EP resulted in delay and shortening of the first relapse, and lower clinical scores, whereas the second attack was annihilated. Further studies on the possibility to use EP as an MS therapeutic are warranted.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Fumaratos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Piruvatos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Fumarato de Dimetilo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Linfonodos/citologia , Linfonodos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA