Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; : e2301451, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38161249

RESUMO

The development and use of interface materials are essential to the continued advancement of organic solar cells (OSCs) performance. Self-assembled monolayer (SAM) materials have drawn attention because of their simple structure and affordable price. Due to their unique properties, they may be used in inverted devices as a modification layer for modifying ZnO or as a hole transport layer (HTL) in place of typical poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in conventional devices. In this work, zinc oxide (ZnO) is modified using five structurally similar SAM materials. This resulted in a smoother surface, a decrease in work function, a suppression of charge recombination, and an increase in device efficiency and photostability. In addition, they can introduced asfor hole extraction layer between the active layer and MoO3 , enabling the use of the same material at several functional layers in the same device. Through systematic orthogonal evaluation, it is shown that some SAM/active layer/SAM combinations still offered device efficiencies comparable to ZnO/SAM, but with improved device' photostability. This study may provide recommendations for future SAM material's design and development as well as a strategy for boosting device performance by using the same material across both sides of the photoactive layer in OSCs.

2.
ACS Appl Mater Interfaces ; 15(38): 45146-45157, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713523

RESUMO

Organic solar cells (OSCs) have been a popular topic of research for a long time. As a well-known electron transport layer (ETL) material for inverted device architecture, sol-gel-derived zinc oxide (ZnO) displays certain defective surfaces that cause excessive charge recombination and lower device performance. While ultraviolet (UV)-light soaking is sometimes necessary for the ZnO layer to function properly, the latter can also cause the photodegradation of conjugated organic semiconductors. The photostability of OSCs has always been a hot research topic, as the radiation of UV light may cause changes in the material's properties, and that, in turn, may cause rapid attenuation of the devices. Herein, ZnO is modified by inserting the commonly used sunscreen ingredient benzophenone-3 (BP-3) between the photoactive layer, consisting of a PM6:Y6 blend, and ZnO to reduce the impact of UV radiation on the photosensitive layer. The addition of BP-3 successfully enhances the photovoltaic parameters, and a remarkable open-circuit voltage (Voc) value of 0.887 V is obtained for PM6:Y6-based inverted solar cells, corresponding to a Voc loss as small as 0.547 V. Finally, the application of this strategy increases the device's power conversion efficiency from 12.44 to 13.71% and provides improved UV stability.

3.
Nanoscale Adv ; 5(17): 4402-4414, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37638158

RESUMO

Nanodiamonds (NDs) are versatile, broadly available nanomaterials with a set of features highly attractive for applications from biology over energy harvesting to quantum technologies. Via synthesis and surface chemistry, NDs can be tuned from the sub-micron to the single-digit size, from conductive to insulating, from hydrophobic to hydrophilic, and from positively to negatively charged surface by simple annealing processes. Such ND diversity makes it difficult to understand and take advantage of their electronic properties. Here we present a systematic correlated study of structural and electronic properties of NDs with different origins and surface terminations. The absolute energy level diagrams are obtained by the combination of optical (UV-vis) and photoelectron (UPS) spectroscopies, Kelvin probe measurements, and energy-resolved electrochemical impedance spectroscopy (ER-EIS). The energy levels and density of states in the bandgap of NDs are correlated with the surface chemistry and structure characterized by FTIR and Raman spectroscopy. We show profound differences in energy band shifts (by up to 3 eV), Fermi level position (from p-type to n-type), electron affinity (from +0.5 eV to -2.2 eV), optical band gap (5.2 eV to 5.5 eV), band gap states (tail or mid-gap), and electrical conductivity depending on the high-pressure, high-temperature and detonation origin of NDs as well as on the effects of NDs' oxidation, hydrogenation, sp2/sp3 carbon phases and surface adsorbates. These data are fundamental for understanding and designing NDs' optoelectrochemical functional mechanisms in diverse application areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA