Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Gerontol ; 178: 112231, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286062

RESUMO

Health benefits of physical activity (PA) are well known; however, specific PA patterns that relate most strongly to cognitive aging outcomes are poorly understood. We characterized latent profiles of PA among older adults and examined associations with cognition and vascular burden. 124 functionally normal older adults wore a Fitbit™ for 30 days. Daily average step count, sedentary time (0 steps/min), and high-intensity time (≥120 steps/min) were calculated. Participants completed neurocognitive testing assessing cognitive domains of executive functioning and memory; medical history, from which vascular burden (i.e., a count of cardiovascular conditions) was calculated; and brain MRI (n = 44). Subgroups with similar PA patterns were identified via latent profile analysis. Three latent PA classes emerged: Class 1Low PA (n = 49), Class 2Average PA (n = 59), and Class 3High-intensity PA (n = 16). PA class related to executive functioning and vascular burden, driven by better outcomes in Class 3 than Class 1. Sex-stratified analyses revealed these associations were strongest in males. Post hoc analyses showed a positive association between high-intensity PA and white matter integrity among males. High-intensity PA related to better cognitive and vascular health, particularly among males. Findings inform physical activity-specific and person-specific recommendations for optimal cognitive aging.


Assuntos
Actigrafia , Substância Branca , Masculino , Humanos , Idoso , Cognição , Exercício Físico/psicologia , Função Executiva
2.
Front Digit Health ; 4: 869790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120711

RESUMO

Physical activity (PA) is associated with preserved age-related body and brain health. However, PA quantification can vary. Commercial-grade wearable monitors are objective, low burden tools to capture PA but are less well validated in older adults. Self-report PA questionnaires are widely accepted and more frequently used but carry inherent limitations. We aimed to compare these commonly used PA measures against one another and examine their convergent validity with a host of relevant outcomes. We also examined the factors that drive differences in PA self-reporting styles in older adults. 179 older adults completed 30-day Fitbit Flex2™ monitoring and reported PA levels via two widely used PA questionnaires: PASE and CHAMPS-METs (metabolic expenditure calories burned). Participants also completed measures of cardiometabolic (hypertension diagnosis, resting heart rate, A1C levels), cognitive (memory, processing speed, executive functioning), and brain MRI (medial temporal lobe volume) outcomes. The discrepancy between objective Fitbit monitoring and self-reported PA was evaluated using a sample-based z difference score. There were only modest relationships across all PA metrics. Fitbit step count demonstrated a stronger association with the PASE, whereas Fitbit calories burned was more strongly associated with CHAMPS-MET. Fitbit outcomes had more consistent convergence with relevant outcomes of interest (e.g., cardiometabolic and brain health indices) when compared to subjective measures; however, considerable heterogeneity within these associations was observed. A higher degree of overreporting was associated with worse memory and executive performances, as well as hypertension diagnoses. We build on prior findings that wearable, digital health indicators of PA demonstrate greater construct validity than self-report in older adults. We further show important clinical features (e.g., poorer cognitive status) of older adults that could contribute to a higher level of overreporting on self-report measures. Characterization of what PA measures truly operationalize will help elucidate relationships between most relevant facets of PA and outcomes of interest.

3.
Neurology ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36041868

RESUMO

BACKGROUND AND OBJECTIVES: Synaptic dysfunction and degeneration is a predominant feature of brain aging and synaptic preservation buffers against Alzheimer's disease (AD) protein-related brain atrophy. We tested whether cerebrospinal fluid (CSF) synaptic protein concentrations similarly moderate the effects of axonal injury, indexed via CSF neurofilament light [NfL], on brain atrophy in clinically normal adults. METHODS: Clinically normal older adults enrolled in the observational Hillblom Aging Network study at the UCSF Memory and Aging Center completed baseline lumbar puncture and longitudinal brain MRI (Mean scan [follow-up]=2.6 [3.7 years]). CSF was assayed for synaptic proteins (synaptotagmin-1, synaptosomal-associated protein 2 [SNAP-25], neurogranin, growth associated protein 43 [GAP-43]), axonal injury (NfL), and core AD biomarkers (ptau181/Aß42 ratio; reflecting AD proteinopathy). Ten bilateral temporo-parietal gray matter ROIs shown to be sensitive to clinical AD were summed to generate a composite temporo-parietal ROI. Linear mixed-effects models tested statistical moderation of baseline synaptic proteins on baseline NfL-related temporo-parietal trajectories, controlling for ptau181/Aß42 ratios. RESULTS: Forty-six clinically normal older adults (Mean age=70; 43% female) were included. Synaptic proteins exhibited small to medium correlations with NfL (r range: .10 to .36). Higher baseline NfL, but not ptau181/Aß42 ratios, predicted steeper temporo-parietal atrophy (NfL x time: ß=-0.08, p<.001; ptau181/Aß42 x time: ß=-0.02, p=.31). SNAP-25, neurogranin, and GAP-43 significantly moderated NfL-related atrophy trajectories (-0.07≤ßs≥-0.06, ps<.05) such that NfL was associated with temporo-parietal atrophy at high (more abnormal) but not low (more normal) synaptic protein concentrations. At high NfL concentrations, atrophy trajectories were 1.5 to 4.5 times weaker when synaptic protein concentrations were low (ß range: -0.21 to -0.07) than high (ß range: -0.33 to -0.30). CONCLUSIONS: The association between baseline CSF NfL and longitudinal temporo-parietal atrophy is accelerated by synaptic dysfunction and buffered by synaptic integrity. Beyond AD proteins, concurrent examination of in vivo axonal and synaptic biomarkers may improve detection of neural alterations that precede overt structural changes in AD-sensitive brain regions.

4.
Front Digit Health ; 4: 884208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754462

RESUMO

Introduction: Wearables have great potential to improve monitoring and delivery of physical activity interventions to older adults with downstream benefits to multisystem health and longevity; however, benefits obtained from wearables depend on their uptake and usage. Few studies have examined person-specific factors that relate to wearable adherence. We characterized adherence to using a wearable activity tracker for 30 days and examined associations between adherence and demographics, cognitive functioning, brain volumes, and technology familiarity among community-dwelling older adults. Methods: Participants were 175 older adults enrolled in the UCSF Longitudinal Brain Aging Study who were asked to wear a FitbitTM Flex 2 during waking hours for 30 days. Sixty two of these participants were also asked to sync their devices to the Fitbit smartphone app daily to collect minute-level data. We calculated adherence to wearing the Fitbit daily (i.e., proportion of days with valid activity data) and adherence to daily device syncing (i.e., proportion of days with minute-level activity data). Participants also completed a brain MRI and in-person cognitive testing measuring memory, executive functioning, and processing speed. Spearman correlations, Wilcoxon rank sum tests, and logistic regression tested relationships between wearable adherence and clinicodemographic factors. Results: Participants wore the Fitbits for an average of 95% of study days and were 85% adherent to the daily syncing protocol. Greater adherence to wearing the device was related to female sex. Greater adherence to daily device syncing was related to better memory, independent of demographic factors. Wearable adherence was not significantly related to age, education, executive functioning, processing speed, brain gray matter volumes, or self-reported familiarity with technology. Participants reported little-to-no difficulty using the wearable and all reported willingness to participate in another wearable study in the future. Conclusions: Older adults have overall high adherence to wearable use in the current study protocol. Person-specific factors, however, may represent potential barriers to equitable uptake of wearables for physical activity among older adults, including demographics and cognitive functioning. Future studies and clinical providers utilizing wearable activity trackers with older adults may benefit from implementation of reminders (e.g., texts, calls) for device use, particularly among men and individuals with memory impairment.

5.
Neurology ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947778

RESUMO

OBJECTIVE: To test the hypothesis that fundamental relationships along the amyloid, tau, and neurodegeneration (A/T/N) cascade depend on synaptic integrity in older adults in-vivo and postmortem. METHODS: Two independent observational, cross-sectional cohorts: 1) in-vivo community-dwelling, clinically normal adults from the UCSF Memory and Aging Center completed lumbar puncture and MRI (exclusion criteria, CDR>0), and 2) postmortem decedents from the Rush Memory and Aging Project (exclusion criteria, inability to sign informed consent). In-vivo measures included cerebrospinal fluid (CSF) synaptic proteins (synaptotagmin-1, SNAP-25, neurogranin, and GAP-43), Aß42/40, ptau181, and MRI gray matter volume (GMV). Postmortem measures captured brain tissue levels of presynaptic proteins (complexin-I, complexin-II, VAMP, and SNARE complex), and neuritic plaque and neurofibrillary tangle (NFT) counts. Regression models tested statistical moderation of synaptic protein levels along the A/T/N cascade (synaptic proteins*amyloid on tau, and synaptic proteins*tau on GMV). RESULTS: 68 in-vivo older adults (age=71y, 43%F) and 633 decedents (age=90y, 68%F, 34% clinically normal) were included. Each in-vivo CSF synaptic protein moderated the relationship between Aß42/40 and ptau181 (-0.23<𝛽s<-0.12, ps<0.05) and the relationship between ptau and GMV (-0.49<𝛽s<-0.32, ps<0.05). Individuals with more abnormal CSF synaptic protein demonstrated expected relationships between Aß-ptau and ptau-brain volume, effects that were absent or reversed in those with more normal CSF synaptic protein. Postmortem analyses recapitulated CSF models. More normal brain tissue levels of complexin-I, VAMP, and SNARE moderated the adverse relationship between neuritic plaque and NFT counts (-0.10<𝛽s<-0.08, ps<0.05). CONCLUSIONS: Pathogenic relationships of Aß and tau may depend on synaptic state. Synaptic markers may help identify risk and/or resilience to AD proteinopathy.

6.
Am J Geriatr Psychiatry ; 28(9): 946-956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527600

RESUMO

OBJECTIVE: Despite the losses commonly associated with aging, older adults seem to possess particularly preserved emotional regulation. To further understand this phenomenon, the authors examined longitudinal trajectories between age, depressive symptoms, brain structure, and cognition. METHODS: Seven hundred and sixteen functionally intact older adults (age M = 67.9, 56.8% female), followed longitudinally (visit range: 1-13, M = 2.5), completed cognitive testing and the Geriatric Depression Scale (GDS). A subset (N = 327) underwent 3T brain MRI. Mixed-effects linear regression models were conducted controlling for sex, education, and total intracranial volume. RESULTS: There was a significant interaction between age and time on GDS, such that GDS improved with increasing age over time, but attenuated around age 71 (age*time b = 0.10, p <0.001). Fractional anisotropy (FA) and mean diffusivity interacted with age to predict longitudinal changes in GDS (FA: b = -0.02, p = 0.01; MD: b = 0.03, p = 0.007), such that age-related benefits on GDS were attenuated in those with declining FA. Executive function (EF) and processing speed also interacted with age to predict longitudinal changes in GDS (EF: b = -0.04, p = 0.03; speed: b = 0.04, p = 0.04). Again, the positive effect of age on GDS attenuated in those with worsening EF and speed. There were no associations with memory, semantic fluency, or gray matter (p values >0.05). CONCLUSION: EF, processing speed, and white matter integrity moderated the longitudinal relationship between age and mood. Previous studies demonstrate the link between positivity and better cognitive control, leading to improved mood in older adults. Our results are not only consistent, but establish a potential neurobiological correlate. Future research further exploring biological mechanisms driving psychological processes may have important therapeutic implications.


Assuntos
Envelhecimento/psicologia , Encéfalo , Cognição/fisiologia , Depressão , Regulação Emocional , Otimismo/psicologia , Afeto/fisiologia , Idoso , Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Correlação de Dados , Depressão/diagnóstico , Depressão/etiologia , Depressão/prevenção & controle , Função Executiva/fisiologia , Feminino , Neuroimagem Funcional/métodos , Neuroimagem Funcional/estatística & dados numéricos , Humanos , Estudos Longitudinais , Masculino , Testes Neuropsicológicos/estatística & dados numéricos , Desempenho Físico Funcional , Psicologia Positiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA