Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617314

RESUMO

How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.

2.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967531

RESUMO

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Assuntos
Células Progenitoras Endoteliais , Proteínas Supressoras de Tumor , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Macrófagos Associados a Tumor/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Alvo Mecanístico do Complexo 1 de Rapamicina , Neovascularização Patológica , Mamíferos
4.
Nature ; 619(7970): 616-623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380769

RESUMO

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.


Assuntos
Competição entre as Células , Técnicas de Reprogramação Celular , Imunidade Inata , Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Competição entre as Células/genética , Competição entre as Células/imunologia , Proteínas Alimentares/farmacologia , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
5.
Sci Immunol ; 7(70): eabi8642, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394814

RESUMO

Innate lymphocytes are integral components of the cellular immune system that can coordinate host defense against a multitude of challenges and trigger immunopathology when dysregulated. Natural killer (NK) cells and innate lymphoid cells (ILCs) are innate immune effectors postulated to functionally mirror conventional cytotoxic T lymphocytes and helper T cells, respectively. Here, we showed that the cytolytic molecule granzyme C was expressed in cells with the phenotype of type 1 ILCs (ILC1s) in mouse liver and salivary gland. Cell fate-mapping and transfer studies revealed that granzyme C-expressing innate lymphocytes could be derived from ILC progenitors and did not interconvert with NK cells, ILC2s, or ILC3s. Granzyme C defined a maturation state of ILC1s. These granzyme C-expressing ILC1s required the transcription factors T-bet and, to a lesser extent, Eomes and support from transforming growth factor-ß (TGF-ß) signaling for their maintenance in the salivary gland. In a transgenic mouse breast cancer model, depleting ILC1s caused accelerated tumor growth. ILC1s gained granzyme C expression following interleukin-15 (IL-15) stimulation, which enabled perforin-mediated cytotoxicity. Constitutive activation of STAT5, a transcription factor regulated by IL-15, in granzyme C-expressing ILC1s triggered lethal perforin-dependent autoimmunity in neonatal mice. Thus, granzyme C marks a cytotoxic effector state of ILC1s, broadening their function beyond "helper-like" lymphocytes.


Assuntos
Imunidade Inata , Interleucina-15 , Animais , Autoimunidade , Granzimas , Células Matadoras Naturais , Camundongos , Perforina
6.
Nature ; 605(7908): 139-145, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35444279

RESUMO

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αß T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.


Assuntos
Imunidade Inata , Interleucina-15 , Neoplasias , Animais , Diferenciação Celular , Camundongos , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
8.
Dermatol Clin ; 39(4): 521-532, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34556242

RESUMO

Cutaneous findings have increasingly been reported in patients with coronavirus disease 2019 (COVID-19). This review discusses associated skin findings in patients with COVID-19 in the inpatient setting, ranging from vasculopathy-related lesions associated with high hospitalization rate and poor prognosis to inflammatory vesicular and urticarial eruptions that are rarely associated with prolonged hospitalization. We also discuss other reported COVID-19 cutaneous manifestations such as Sweet's syndrome, purpuric eruptions, and Multisystem Inflammatory Syndrome in Children. Although the relationship between dermatologic changes and COVID-19 disease progression is not fully elucidated, familiarity with cutaneous manifestations is valuable for physicians caring for patients hospitalized with COVID-19 and may help improve disease recognition and care.


Assuntos
COVID-19/complicações , COVID-19/diagnóstico , Pacientes Internados/estatística & dados numéricos , Dermatopatias/diagnóstico , Dermatopatias/etiologia , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Adulto , COVID-19/patologia , Pérnio/diagnóstico , Pérnio/etiologia , Criança , Exantema/diagnóstico , Exantema/etiologia , Humanos , Pitiríase Rósea/diagnóstico , Pitiríase Rósea/etiologia , Dermatopatias Vasculares/diagnóstico , Dermatopatias Vasculares/etiologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Urticária/diagnóstico , Urticária/etiologia
10.
Immunity ; 54(5): 976-987.e7, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979589

RESUMO

Aerobic glycolysis-the Warburg effect-converts glucose to lactate via the enzyme lactate dehydrogenase A (LDHA) and is a metabolic feature of effector T cells. Cells generate ATP through various mechanisms and Warburg metabolism is comparatively an energy-inefficient glucose catabolism pathway. Here, we examined the effect of ATP generated via aerobic glycolysis in antigen-driven T cell responses. Cd4CreLdhafl/fl mice were resistant to Th17-cell-mediated experimental autoimmune encephalomyelitis and exhibited defective T cell activation, migration, proliferation, and differentiation. LDHA deficiency crippled cellular redox balance and inhibited ATP production, diminishing PI3K-dependent activation of Akt kinase and thereby phosphorylation-mediated inhibition of Foxo1, a transcriptional repressor of T cell activation programs. Th17-cell-specific expression of an Akt-insensitive Foxo1 recapitulated the defects seen in Cd4CreLdhafl/fl mice. Induction of LDHA required PI3K signaling and LDHA deficiency impaired PI3K-catalyzed PIP3 generation. Thus, Warburg metabolism augments glycolytic ATP production, fueling a PI3K-centered positive feedback regulatory circuit that drives effector T cell responses.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/fisiologia , Células Th17/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Glicólise/fisiologia , L-Lactato Desidrogenase/deficiência , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
J Am Acad Dermatol ; 85(6): 1528-1536, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33744355

RESUMO

BACKGROUND: The incidence of dermatologic infections in patients receiving checkpoint inhibitors (CPIs) has not been systematically described. OBJECTIVE: Identify the incidence of dermatologic infections in patients who received CPIs. METHODS: Retrospective review of dermatologic infections in patients who received CPIs between 2005 and 2020 and were evaluated by dermatologists at Memorial Sloan Kettering Cancer Center. RESULTS: Of 2061 patients in the study, 1292 were actively receiving CPIs (≤ 90 days since the last dose) and 769 had previously been on CPIs (> 90 days since the last dose). The dermatologic infection rate was significantly higher in patients with active CPI treatment (17.5%) than in patients not actively being treated (8.2%; P < .0001). In patients on CPIs, 82 (36.2%), 78 (34.5%), and 48 (21.2%) had bacterial, fungal, and viral infections, respectively, and 18 (8.0%) had polymicrobial infections. Anti-cytotoxic T-lymphocyte-associated antigen-4 monotherapy was associated with the highest risk of infection (hazard ratio, 2.93; 95% confidence interval, 1.87 to 4.60; P < .001). LIMITATIONS: Retrospective design and sample limited to patients referred to dermatology. CONCLUSIONS: Patients actively receiving CPIs are more susceptible to dermatologic infections, with anti-cytotoxic T-lymphocyte-associated antigen-4 monotherapy carrying the highest risk, suggesting that the index of suspicion for infections should be increased in these patients to minimize morbidity and optimize care.


Assuntos
Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Incidência , Neoplasias/tratamento farmacológico , Estudos Retrospectivos
13.
Science ; 371(6527): 405-410, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33479154

RESUMO

Infection triggers expansion and effector differentiation of T cells specific for microbial antigens in association with metabolic reprograming. We found that the glycolytic enzyme lactate dehydrogenase A (LDHA) is induced in CD8+ T effector cells through phosphoinositide 3-kinase (PI3K) signaling. In turn, ablation of LDHA inhibits PI3K-dependent phosphorylation of Akt and its transcription factor target Foxo1, causing defective antimicrobial immunity. LDHA deficiency cripples cellular redox control and diminishes adenosine triphosphate (ATP) production in effector T cells, resulting in attenuated PI3K signaling. Thus, nutrient metabolism and growth factor signaling are highly integrated processes, with glycolytic ATP serving as a rheostat to gauge PI3K-Akt-Foxo1 signaling in the control of T cell immunity. Such a bioenergetic mechanism for the regulation of signaling may explain the Warburg effect.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glicólise , Lactato Desidrogenase 5/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Linfócitos T CD8-Positivos/enzimologia , Proteína Forkhead Box O1/metabolismo , Humanos , Lactato Desidrogenase 5/genética , Listeria monocytogenes , Listeriose/enzimologia , Listeriose/imunologia , Camundongos , Camundongos Mutantes , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Efeito Warburg em Oncologia
14.
Nature ; 587(7832): 115-120, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087928

RESUMO

The immune system uses two distinct defence strategies against infections: microbe-directed pathogen destruction characterized by type 1 immunity1, and host-directed pathogen containment exemplified by type 2 immunity in induction of tissue repair2. Similar to infectious diseases, cancer progresses with self-propagating cancer cells inflicting host-tissue damage. The immunological mechanisms of cancer cell destruction are well defined3-5, but whether immune-mediated cancer cell containment can be induced remains poorly understood. Here we show that depletion of transforming growth factor-ß receptor 2 (TGFBR2) in CD4+ T cells, but not CD8+ T cells, halts cancer progression as a result of tissue healing and remodelling of the blood vasculature, causing cancer cell hypoxia and death in distant avascular regions. Notably, the host-directed protective response is dependent on the T helper 2 cytokine interleukin-4 (IL-4), but not the T helper 1 cytokine interferon-γ (IFN-γ). Thus, type 2 immunity can be mobilized as an effective tissue-level defence mechanism against cancer.


Assuntos
Neoplasias/imunologia , Neoplasias/patologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Morte Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular , Progressão da Doença , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Interferon gama/imunologia , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/deficiência , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/imunologia , Células Th2/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores
15.
Nature ; 587(7832): 121-125, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087933

RESUMO

Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-ß (TGF-ß) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-ß signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-ß receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-ß-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-ß Trap (4T-Trap). Compared with a non-targeted TGF-ß-Trap, 4T-Trap selectively inhibited TH cell TGF-ß signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-ß signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Interleucina-4/imunologia , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Masculino , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo II/química , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
J Am Acad Dermatol ; 83(5): 1239-1253, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32461079

RESUMO

As the incidence of cutaneous malignancies continues to rise and their treatment with immunotherapy expands, dermatologists and their patients are more likely to encounter immune checkpoint inhibitors. While the blockade of immune checkpoint target proteins (cytotoxic T-lymphocyte-associated protein-4, programmed cell death-1, and programmed cell death ligand-1) generates an antitumor response in a substantial fraction of patients, there is a critical need for reliable predictive biomarkers and approaches to address refractory disease. The first article of this Continuing Medical Education series reviews the indications, efficacy, safety profile, and evidence supporting checkpoint inhibition as therapeutics for metastatic melanoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma. Pivotal studies resulting in the approval of ipilimumab, pembrolizumab, nivolumab, cemiplimab, and avelumab by regulatory agencies for various cutaneous malignancies, as well as ongoing clinical research trials, are discussed.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Humanos , Melanoma/tratamento farmacológico
20.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31964746

RESUMO

The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding ß-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.


Assuntos
Ampicilina/metabolismo , Antibacterianos/metabolismo , Clostridioides difficile/efeitos dos fármacos , Escherichia coli/metabolismo , Intestinos/microbiologia , Listeria monocytogenes/efeitos dos fármacos , beta-Lactamases/metabolismo , Ampicilina/administração & dosagem , Ampicilina/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Clostridioides difficile/crescimento & desenvolvimento , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Hidrólise , Camundongos , Interações Microbianas , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA