Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
JAMA Pediatr ; 178(1): 81-84, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37983059

RESUMO

This case-control study examines the prevalence of rare de novo and inherited sequence variations among children and adolescents with attention-deficit/hyperactivity disorder (ADHD) and siblings and parents without ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Criança , Transtorno do Deficit de Atenção com Hiperatividade/genética , Pais , Irmãos
2.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986891

RESUMO

The mammalian cerebral cortex shows functional specialization into regions with distinct neuronal compositions, most strikingly in the human brain, but little is known in about how cellular lineages shape cortical regional variation and neuronal cell types during development. Here, we use somatic single nucleotide variants (sSNVs) to map lineages of neuronal sub-types and cortical regions. Early-occurring sSNVs rarely respect Brodmann area (BA) borders, while late-occurring sSNVs mark neuron-generating clones with modest regional restriction, though descendants often dispersed into neighboring BAs. Nevertheless, in visual cortex, BA17 contains 30-70% more sSNVs compared to the neighboring BA18, with clones across the BA17/18 border distributed asymmetrically and thus displaying different cortex-wide dispersion patterns. Moreover, we find that excitatory neuron-generating clones with modest regional restriction consistently share low-mosaic sSNVs with some inhibitory neurons, suggesting significant co-generation of excitatory and some inhibitory neurons in the dorsal cortex. Our analysis reveals human-specific cortical cell lineage patterns, with both regional inhomogeneities in progenitor proliferation and late divergence of excitatory/inhibitory lineages.

3.
medRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790480

RESUMO

Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.

5.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486637

RESUMO

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Assuntos
Polimicrogiria , Humanos , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Sequenciamento do Exoma , Estudos Retrospectivos , Mutação de Sentido Incorreto , Irmãos , Proteínas do Tecido Nervoso/genética , Conexinas/genética
6.
Vet Pathol ; 59(1): 132-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34490804

RESUMO

Canine multiple system degeneration (CMSD) is a progressive hereditary neurodegenerative disorder commonly characterized by neuronal degeneration and loss in the cerebellum, olivary nuclei, substantia nigra, and caudate nuclei. In this article, we describe 3 cases of CMSD in Ibizan hounds. All patients exhibited marked cerebellar ataxia and had cerebellar atrophy on magnetic resonance imaging. At necropsy, all cases showed varying degrees of cerebellar atrophy, and 2 cases had gross cavitation of the caudate nuclei. Histologic findings included severe degeneration and loss of all layers of the cerebellum and neuronal loss and degeneration within the olivary nuclei, substantia nigra, and caudate nuclei. Pedigree analysis indicated an autosomal recessive mode of inheritance, but the causative gene in this breed is yet to be identified. CMSD resembles human multiple system atrophy and warrants further investigation.


Assuntos
Doenças do Cão , Doenças Neurodegenerativas , Animais , Autopsia/veterinária , Cruzamento , Cerebelo/diagnóstico por imagem , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Cães , Humanos , Doenças Neurodegenerativas/veterinária
7.
Cancer Discov ; 12(1): 172-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389641

RESUMO

Although oncogenic mutations have been found in nondiseased, proliferative nonneural tissues, their prevalence in the human brain is unknown. Targeted sequencing of genes implicated in brain tumors in 418 samples derived from 110 individuals of varying ages, without tumor diagnoses, detected oncogenic somatic single-nucleotide variants (sSNV) in 5.4% of the brains, including IDH1 R132H. These mutations were largely present in subcortical white matter and enriched in glial cells and, surprisingly, were less common in older individuals. A depletion of high-allele frequency sSNVs representing macroscopic clones with age was replicated by analysis of bulk RNA sequencing data from 1,816 nondiseased brain samples ranging from fetal to old age. We also describe large clonal copy number variants and that sSNVs show mutational signatures resembling those found in gliomas, suggesting that mutational processes of the normal brain drive early glial oncogenesis. This study helps understand the origin and early evolution of brain tumors. SIGNIFICANCE: In the nondiseased brain, clonal oncogenic mutations are enriched in white matter and are less common in older individuals. We revealed early steps in acquiring oncogenic variants, which are essential to understanding brain tumor origins and building new mutational baselines for diagnostics.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Oncogenes , Polimorfismo de Nucleotídeo Único , Adulto Jovem
8.
Neuron ; 109(20): 3239-3251.e7, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34478631

RESUMO

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans. Finally, we show that PPP1R17 slows neural progenitor cell cycle progression, paralleling the cell cycle length increase seen predominantly in primate and especially human neurodevelopment. Our findings establish HARs as key components in rewiring human-specific neurodevelopmental gene regulatory programs and provide an integrated resource to study enhancer activity of specific HARs.


Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Animais , Evolução Biológica , Epigenômica , Evolução Molecular , Furões , Humanos , Macaca , Camundongos , Pan troglodytes
9.
Epilepsia ; 62(6): 1416-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949696

RESUMO

OBJECTIVE: Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. METHODS: Four web-based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD-relevant genes in paired brain and blood samples from the same 22 epilepsy patients. RESULTS: Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. SIGNIFICANCE: The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype-phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype-phenotype diagnosis in the near future.


Assuntos
Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto , Idade de Início , Diversidade de Anticorpos , Encéfalo/patologia , Criança , Pré-Escolar , Técnica Delphi , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Lactente , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/cirurgia , Pessoa de Meia-Idade , Mutação/genética , Procedimentos Neurocirúrgicos , Variações Dependentes do Observador , Fenótipo , Convulsões/etiologia , Adulto Jovem
11.
Science ; 371(6535): 1249-1253, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33737485

RESUMO

Although cell lineage information is fundamental to understanding organismal development, very little direct information is available for humans. We performed high-depth (250×) whole-genome sequencing of multiple tissues from three individuals to identify hundreds of somatic single-nucleotide variants (sSNVs). Using these variants as "endogenous barcodes" in single cells, we reconstructed early embryonic cell divisions. Targeted sequencing of clonal sSNVs in different organs (about 25,000×) and in more than 1000 cortical single cells, as well as single-nucleus RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing of ~100,000 cortical single cells, demonstrated asymmetric contributions of early progenitors to extraembryonic tissues, distinct germ layers, and organs. Our data suggest onset of gastrulation at an effective progenitor pool of about 170 cells and about 50 to 100 founders for the forebrain. Thus, mosaic mutations provide a permanent record of human embryonic development at very high resolution.


Assuntos
Linhagem da Célula , Gastrulação , Mutação , Células-Tronco Neurais/citologia , Prosencéfalo/citologia , Adolescente , Adulto , Divisão Celular , Células Clonais/citologia , Desenvolvimento Embrionário/genética , Feminino , Gástrula/citologia , Variação Genética , Camadas Germinativas/citologia , Humanos , Masculino , Neurônios/citologia , Organogênese , Polimorfismo de Nucleotídeo Único , Prosencéfalo/embriologia , Análise de Célula Única , Sequenciamento Completo do Genoma
12.
BMC Med Genomics ; 14(1): 47, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579278

RESUMO

BACKGROUND: Mosaic mutations contribute to numerous human disorders. As such, the identification and precise quantification of mosaic mutations is essential for a wide range of research applications, clinical diagnoses, and early detection of cancers. Currently, the low-throughput nature of single allele assays (e.g., allele-specific ddPCR) commonly used for genotyping known mutations at very low alternate allelic fractions (AAFs) have limited the integration of low-level mosaic analyses into clinical and research applications. The growing importance of mosaic mutations requires a more rapid, low-cost solution for mutation detection and validation. METHODS: To overcome these limitations, we developed Multiple Independent Primer PCR Sequencing (MIPP-Seq) which combines the power of ultra-deep sequencing and truly independent assays. The accuracy of MIPP-seq to quantifiable detect and measure extremely low allelic fractions was assessed using a combination of SNVs, insertions, and deletions at known allelic fractions in blood and brain derived DNA samples. RESULTS: The Independent amplicon analyses of MIPP-Seq markedly reduce the impact of allelic dropout, amplification bias, PCR-induced, and sequencing artifacts. Using low DNA inputs of either 25 ng or 50 ng of DNA, MIPP-Seq provides sensitive and quantitative assessments of AAFs as low as 0.025% for SNVs, insertion, and deletions. CONCLUSIONS: MIPP-Seq provides an ultra-sensitive, low-cost approach for detecting and validating known and novel mutations in a highly scalable system with broad utility spanning both research and clinical diagnostic testing applications. The scalability of MIPP-Seq allows for multiplexing mutations and samples, which dramatically reduce costs of variant validation when compared to methods like ddPCR. By leveraging the power of individual analyses of multiple unique and independent reactions, MIPP-Seq can validate and precisely quantitate extremely low AAFs across multiple tissues and mutational categories including both indels and SNVs. Furthermore, using Illumina sequencing technology, MIPP-seq provides a robust method for accurate detection of novel mutations at an extremely low AAF.


Assuntos
Mutação INDEL , Humanos , Neoplasias , Software
13.
Nat Neurosci ; 24(2): 176-185, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432195

RESUMO

We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Pré-Frontal/patologia , Divisão Celular/genética , Cromatina/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Éxons , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença , Genoma Humano/genética , Mutação em Linhagem Germinativa/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez , Sequenciamento Completo do Genoma
14.
Ann Neurol ; 88(6): 1153-1164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32959437

RESUMO

OBJECTIVE: Congenital structural brain malformations have been described in patients with pathogenic phosphatase and tensin homologue (PTEN) variants, but the frequency of cortical malformations in patients with PTEN variants and their impact on clinical phenotype are not well understood. Our goal was to systematically characterize brain malformations in patients with PTEN variants and assess the relevance of their brain malformations to clinical presentation. METHODS: We systematically searched a local radiology database for patients with PTEN variants who had available brain magnetic resonance imaging (MRI). The MRI scans were reviewed systematically for cortical abnormalities. We reviewed electroencephalogram (EEG) data and evaluated the electronic medical record for evidence of epilepsy and developmental delay. RESULTS: In total, we identified 22 patients with PTEN pathogenic variants for which brain MRIs were available (age range 0.4-17 years). Twelve among these 22 patients (54%) had polymicrogyria (PMG). Variants associated with PMG or atypical gyration encoded regions of the phosphatase or C2 domains of PTEN. Interestingly, epilepsy was present in only 2 of the 12 patients with PMG. We found a trend toward higher rates of global developmental delay (GDD), intellectual disability (ID), and motor delay in individuals with cortical abnormalities, although cohort size limited statistical significance. INTERPRETATION: Malformations of cortical development, PMG in particular, represent an under-recognized phenotype associated with PTEN pathogenic variants and may have an association with cognitive and motor delays. Epilepsy was infrequent compared to the previously reported high risk of epilepsy in patients with PMG. ANN NEUROL 2020;88:1153-1164.


Assuntos
Deficiências do Desenvolvimento/epidemiologia , Deficiência Intelectual/epidemiologia , PTEN Fosfo-Hidrolase/genética , Polimicrogiria/epidemiologia , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Comorbidade , Bases de Dados Genéticas/estatística & dados numéricos , Eletroencefalografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Massachusetts/epidemiologia , Neuroimagem , Polimicrogiria/genética , Polimicrogiria/patologia
15.
Sci Rep ; 10(1): 14045, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820185

RESUMO

More than 98% of the human genome is made up of non-coding DNA, but techniques to ascertain its contribution to human disease have lagged far behind our understanding of protein coding variations. Autism spectrum disorder (ASD) has been mostly associated with coding variations via de novo single nucleotide variants (SNVs), recessive/homozygous SNVs, or de novo copy number variants (CNVs); however, most ASD cases continue to lack a genetic diagnosis. We analyzed 187 consanguineous ASD families for biallelic CNVs. Recessive deletions were significantly enriched in affected individuals relative to their unaffected siblings (17% versus 4%, p < 0.001). Only a small subset of biallelic deletions were predicted to result in coding exon disruption. In contrast, biallelic deletions in individuals with ASD were enriched for overlap with regulatory regions, with 23/28 CNVs disrupting histone peaks in ENCODE (p < 0.009). Overlap with regulatory regions was further demonstrated by comparisons to the 127-epigenome dataset released by the Roadmap Epigenomics project, with enrichment for enhancers found in primary brain tissue and neuronal progenitor cells. Our results suggest a novel noncoding mechanism of ASD, describe a powerful method to identify important noncoding regions in the human genome, and emphasize the potential significance of gene activation and regulation in cognitive and social function.


Assuntos
Transtorno do Espectro Autista/genética , Epigênese Genética , Deleção de Genes , Homozigoto , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Humanos , Masculino
16.
Nat Genet ; 51(7): 1092-1098, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209396

RESUMO

Autism spectrum disorder (ASD) affects up to 1 in 59 individuals1. Genome-wide association and large-scale sequencing studies strongly implicate both common variants2-4 and rare de novo variants5-10 in ASD. Recessive mutations have also been implicated11-14 but their contribution remains less well defined. Here we demonstrate an excess of biallelic loss-of-function and damaging missense mutations in a large ASD cohort, corresponding to approximately 5% of total cases, including 10% of females, consistent with a female protective effect. We document biallelic disruption of known or emerging recessive neurodevelopmental genes (CA2, DDHD1, NSUN2, PAH, RARB, ROGDI, SLC1A1, USH2A) as well as other genes not previously implicated in ASD including FEV (FEV transcription factor, ETS family member), which encodes a key regulator of the serotonergic circuitry. Our data refine estimates of the contribution of recessive mutation to ASD and suggest new paths for illuminating previously unknown biological pathways responsible for this condition.


Assuntos
Desequilíbrio Alélico , Transtorno do Espectro Autista/genética , Genes Recessivos/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Genoma Humano , Humanos , Masculino , Sequenciamento do Exoma
17.
Neuron ; 99(5): 905-913.e7, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30146301

RESUMO

Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel NaV1.3. Pathogenic NaV1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (NaV1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento da Linguagem , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canais de Sódio/genética , Adolescente , Adulto , Animais , Movimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Furões , Células HEK293 , Humanos , Lactente , Masculino , Megalencefalia/diagnóstico por imagem , Megalencefalia/genética , Megalencefalia/patologia , Pessoa de Meia-Idade , Linhagem , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Polimicrogiria/patologia
18.
Annu Rev Neurosci ; 41: 185-206, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29986162

RESUMO

Understanding the biological basis for human-specific cognitive traits presents both immense challenges and unique opportunities. Although the question of what makes us human has been investigated with several different methods, the rise of comparative genomics, epigenomics, and medical genetics has provided tools to help narrow down and functionally assess the regions of the genome that seem evolutionarily relevant along the human lineage. In this review, we focus on how medical genetic cases have provided compelling functional evidence for genes and loci that appear to have interesting evolutionary signatures in humans. Furthermore, we examine a special class of noncoding regions, human accelerated regions (HARs), that have been suggested to show human-lineage-specific divergence, and how the use of clinical and population data has started to provide functional information to examine these regions. Finally, we outline methods that provide new insights into functional noncoding sequences in evolution.


Assuntos
Comportamento/fisiologia , Evolução Biológica , Encéfalo , Genômica , Doenças do Sistema Nervoso , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia
19.
Dev Comp Immunol ; 87: 182-187, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29958850

RESUMO

Neonates of all species, including foals, are highly susceptible to infection, and neutrophils play a crucial role in innate immunity to infection. Evidence exists that neutrophils of neonatal foals are functionally deficient during the first weeks of life, including expression of cytokine genes such as IFNG. We hypothesized that postnatal epigenetic changes were likely to regulate the observed age-related changes in foal neutrophils. Using ChIP-Seq, we identified significant differences in trimethylated histone H3 lysine 4, an epigenetic modification associated with active promoters and enhancers, in neutrophils in foals at 30 days of age relative to 1 day of age. These chromatin changes were associated with genes implicated in immune responses and were consistent with age-related changes in neutrophil functional responses including ROS generation and IFN expression. Postnatal changes in epigenetic modifications suggest that environmentally-mediated cues help to promote maturation of neutrophil functional responses. Elucidating the environmental triggers and their signaling pathways could provide a means for improving innate immune responses of neonates to improve their ability to combat infectious diseases.


Assuntos
Epigênese Genética , Cavalos/genética , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Citocinas/genética , Citocinas/imunologia , Histonas/metabolismo , Doenças dos Cavalos/genética , Doenças dos Cavalos/imunologia , Cavalos/crescimento & desenvolvimento , Cavalos/metabolismo , Imunidade Inata/genética , Imunidade Inata/imunologia , Lisina/metabolismo , Metilação , Neutrófilos/imunologia , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Chromosoma ; 126(5): 645-654, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28233057

RESUMO

During meiosis I, homologous chromosomes join together to form bivalents. Through trial and error, bivalents achieve stable bipolar orientations (attachments) on the spindle that eventually allow the segregation of homologous chromosomes to opposite poles. Bipolar orientations are stable through tension generated by poleward forces to opposite poles. Unipolar orientations lack tension and are stereotypically not stable. The behavior of sex chromosomes during meiosis I in the male black widow spider Latrodectus mactans (Araneae, Theridiidae) challenges the principles governing such a scenario. We found that male L. mactans has two distinct X chromosomes, X1 and X2. The X chromosomes join together to form a connection that is present in prometaphase I but is lost during metaphase I, before the autosomes disjoin at anaphase I. We found that both X chromosomes form stable unipolar orientations to the same pole that assure their co-segregation at anaphase I. Using micromanipulation, immunofluorescence microscopy, and electron microscopy, we studied this unusual chromosome behavior to explain how it may fit the current dogma of chromosome distribution during cell division.


Assuntos
Viúva Negra/genética , Segregação de Cromossomos , Meiose , Cromossomos Sexuais/genética , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA