Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Lett ; 20(5): 20230600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715462

RESUMO

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Varroidae/virologia , Varroidae/fisiologia , Vírus de RNA/fisiologia , Vírus de RNA/genética , França/epidemiologia , Espécies Introduzidas , Dicistroviridae/genética , Dicistroviridae/fisiologia , Prevalência
2.
PLoS Biol ; 21(7): e3002211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498968

RESUMO

The hexagonal cells built by honey bees and social wasps are an example of adaptive architecture; hexagons minimize material use, while maximizing storage space and structural stability. Hexagon building evolved independently in the bees and wasps, but in some species of both groups, the hexagonal cells are size dimorphic-small worker cells and large reproductive cells-which forces the builders to join differently sized hexagons together. This inherent tiling problem creates a unique opportunity to investigate how similar architectural challenges are solved across independent evolutionary origins. We investigated how 5 honey bee and 5 wasp species solved this problem by extracting per-cell metrics from 22,745 cells. Here, we show that all species used the same building techniques: intermediate-sized cells and pairs of non-hexagonal cells, which increase in frequency with increasing size dimorphism. We then derive a simple geometric model that explains and predicts the observed pairing of non-hexagonal cells and their rate of occurrence. Our results show that despite different building materials, comb configurations, and 179 million years of independent evolution, honey bees and social wasps have converged on the same solutions for the same architectural problems, thereby revealing fundamental building properties and evolutionary convergence in construction behavior.


Assuntos
Abelhas , Comportamento de Nidação , Vespas , Animais
3.
Biol Lett ; 19(1): 20220416, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651030

RESUMO

The majority of invasive species are best known for their effects as predators. However, many introduced predators may also be substantial reservoirs for pathogens. Honey bee-associated viruses are found in various arthropod species including invasive ants. We examined how the globally invasive Argentine ant (Linepithema humile), which can reach high densities and infest beehives, is associated with pathogen dynamics in honey bees. Viral loads of deformed wing virus (DWV), which has been linked to millions of beehive deaths around the globe, and black queen cell virus significantly increased in bees when invasive ants were present. Microsporidian and trypanosomatid infections, which are more bee-specific, were not affected by ant invasion. The bee virome in autumn revealed that DWV was the predominant virus with the highest infection levels and that no ant-associated viruses were infecting bees. Viral spillback from ants could increase infections in bees. In addition, ant attacks could pose a significant stressor to bee colonies that may affect virus susceptibility. These viral dynamics are a hidden effect of ant pests, which could have a significant impact on disease emergence in this economically important pollinator. Our study highlights a perhaps overlooked effect of species invasions: changes in pathogen dynamics.


Assuntos
Vírus de RNA , Animais , Abelhas , Espécies Introduzidas
4.
Ecol Appl ; 33(2): e2755, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36196505

RESUMO

Pest control methods that can target pest species with limited environmental impacts are a conservation and economic priority. Species-specific pest control using RNA interference is a challenging but promising avenue in developing the next generation of pest management. We investigate the feasibility of manipulating a biological invader's immune system using double-stranded RNA (dsRNA) in order to increase susceptibility to naturally occurring pathogens. We used the invasive Argentine ant as a model, targeting the immunity-associated genes Spaetzle and Dicer-1 with dsRNA. We show that feeding with Spaetzle dsRNA can result in partial target gene silencing for up to 28 days in the laboratory and 5 days in the field. Dicer-1 dsRNA only resulted in partial gene knockdown after 2 days in the laboratory. Double-stranded RNA treatments were associated with significant gene expression disruptions across immune pathways in the laboratory and to a lower extent in the field. In total, 12 viruses and four bacteria were found in these ant populations. Some changes in viral loads in dsRNA-treated groups were observed. For example, Linepithema humile Polycipivirus 2 (LhuPCV2) loads increased after 2 days of treatment with Spaetzle and Dicer-1 dsRNA treatments in the laboratory. After treatment with the dsRNA in the field, after 5 days the virus Linepithema humile toti-like virus 1 (LhuTLV1) was significantly more abundant. However, immune pathway disruption did not result in a consistent increase in microbial infections, nor did it alter ant abundance in the field. Some viruses even declined in abundance after dsRNA treatment. Our study explored the feasibility of lowering a pest's immunity as a control tool. We demonstrate that it is possible to alter immune gene expression of pest species and pathogen loads, although in our specific system the affected pathogens did not appear to influence pest abundance. We provide suggestions on future directions for dsRNA-mediated immune disruption in pest species, including potential avenues to improve dsRNA delivery as well as the importance of pest and pathogen biology. Double-stranded RNA targeting immune function might be especially useful for pest control in systems in which viruses or other microorganisms are prevalent and have the potential to be pathogenic.


Assuntos
Formigas , Vírus , Animais , RNA de Cadeia Dupla , Inativação Gênica , Interferência de RNA , Vírus/genética
5.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452301

RESUMO

Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.


Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/fisiologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia , Viroma , Vespas/virologia , Animais , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Carga Viral , Replicação Viral
6.
Viruses ; 12(3)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213950

RESUMO

Emerging viruses have caused concerns about pollinator population declines, as multi-host RNA viruses may pose a health threat to pollinators and associated arthropods. In order to understand the ecology and impact these viruses have, we studied their host range and determined to what extent host and spatial variation affect strain diversity. Firstly, we used RT-PCR to screen pollinators and associates, including honey bees (Apis mellifera) and invasive Argentine ants (Linepithema humile), for virus presence and replication. We tested for the black queen cell virus (BQCV), deformed wing virus (DWV), and Kashmir bee virus (KBV) that were initially detected in bees, and the two recently discovered Linepithema humile bunya-like virus 1 (LhuBLV1) and Moku virus (MKV). DWV, KBV, and MKV were detected and replicated in a wide range of hosts and commonly co-infected hymenopterans. Secondly, we placed KBV and DWV in a global phylogeny with sequences from various countries and hosts to determine the association of geographic origin and host with shared ancestry. Both phylogenies showed strong geographic rather than host-specific clustering, suggesting frequent inter-species virus transmission. Transmission routes between hosts are largely unknown. Nonetheless, avoiding the introduction of non-native species and diseased pollinators appears important to limit spill overs and disease emergence.


Assuntos
Variação Genética , Especificidade de Hospedeiro , Vírus de Insetos/fisiologia , Vírus de RNA/fisiologia , Animais , Formigas/virologia , Artrópodes/virologia , Abelhas/virologia , Geografia Médica , Vírus de Insetos/classificação , Filogenia , Filogeografia , Característica Quantitativa Herdável , Vírus de RNA/classificação , Replicação Viral
7.
Mol Ecol ; 28(14): 3324-3338, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31233636

RESUMO

Despite the mitochondrion's long-recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito-nuclear interactions, or could be associated with nuclear-encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.


Assuntos
Variação Genética , Espécies Introduzidas , Mitocôndrias/genética , Vespas/genética , Animais , Bélgica , DNA Circular/genética , Genética Populacional , Genoma Mitocondrial , Geografia , Haplótipos/genética , Nova Zelândia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA