Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cells ; 12(21)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37947660

RESUMO

Spermatogonial stem cell (SSC) transplantation into the testis of a germ cell (GC)-depleted surrogate allows transmission of donor genotype via donor-derived sperm produced by the recipient. Transplantation of gene-edited SSCs provides an approach to propagate gene-edited large animal models. DAZL is a conserved RNA-binding protein important for GC development, and DAZL knockout (KO) causes defects in GC commitment and differentiation. We characterized DAZL-KO pigs as SSC transplantation recipients. While there were GCs in 1-week-old (wko) KO, complete GC depletion was observed by 10 wko. Donor GCs were transplanted into 18 DAZL-KO recipients at 10-13 wko. At sexual maturity, semen and testes were evaluated for transplantation efficiency and spermatogenesis. Approximately 22% of recipient seminiferous tubules contained GCs, including elongated spermatids and proliferating spermatogonia. The ejaculate of 89% of recipients contained sperm, exclusively from donor origin. However, sperm concentration was lower than the wild-type range. Testicular protein expression and serum hormonal levels were comparable between DAZL-KO and wild-type. Intratesticular testosterone and Leydig cell volume were increased, and Leydig cell number decreased in transplanted DAZL-KO testis compared to wild-type. In summary, DAZL-KO pigs support donor-derived spermatogenesis following SSC transplantation, but low spermatogenic efficiency currently limits their use for the production of offspring.


Assuntos
Sêmen , Espermatogônias , Masculino , Animais , Suínos , Espermatogônias/metabolismo , Testículo , Espermatozoides , Transplante de Células-Tronco
2.
Andrology ; 11(6): 1132-1146, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36690000

RESUMO

BACKGROUND: Survivors of childhood cancer often suffer from infertility. While sperm cryopreservation is not feasible before puberty, the patient's own spermatogonial stem cells could serve as a germ cell reservoir, enabling these patients to father their own children in adulthood through the isolation, in vitro expansion, and subsequent transplantation of spermatogonial stem cells. However, this approach requires large numbers of stem cells, and methods for successfully propagating spermatogonial stem cells in the laboratory are yet to be established for higher mammals and humans. The improvement of spermatogonial stem cell culture requires deeper understanding of their metabolic requirements and the mechanisms that regulate metabolic homeostasis. AIM: This review gives a summary on our knowledge of spermatogonial stem cell metabolism during maintenance and differentiation and highlights the potential influence of Sertoli cell and stem cell niche maturation on spermatogonial stem cell metabolic requirements during development. RESULTS AND CONCLUSIONS: Fetal human spermatogonial stem cell precursors, or gonocytes, migrate into the seminiferous cords and supposedly mature to adult stem cells within the first year of human development. However, the spermatogonial stem cell niche does not fully differentiate until puberty, when Sertoli cells dramatically rearrange the architecture and microenvironment within the seminiferous epithelium. Consequently, pre-pubertal and adult spermatogonial stem cells experience two distinct niche environments potentially affecting spermatogonial stem cell metabolism and maturation. Indeed, the metabolic requirements of mouse primordial germ cells and pig gonocytes are distinct from their adult counterparts, and novel single-cell RNA sequencing analysis of human and porcine spermatogonial stem cells during development confirms this metabolic transition. Knowledge of the metabolic requirements and their changes and regulation during spermatogonial stem cell maturation is necessary to implement laboratory-based techniques and enable clinical use of spermatogonial stem cells. Based on the advancement in our understanding of germline metabolism circuits and maturation events of niche cells within the testis, we propose a new definition of spermatogonial stem cell maturation and its amendment in the light of metabolic change.


Assuntos
Nicho de Células-Tronco , Testículo , Criança , Humanos , Masculino , Adulto , Animais , Suínos , Camundongos , Testículo/metabolismo , Espermatogênese/fisiologia , Sêmen , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Mamíferos
3.
Methods Mol Biol ; 2495: 245-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696037

RESUMO

As the genetic mutations driving human disease are identified, there is an increasing need for a biomedical model that can accurately represent the disease of interest and provide a platform for potential therapeutic testing. Pigs are a better model for human disease than rodents because of their genetic and physiological similarities to humans. However, current methods to generate porcine models are both technically challenging and expensive. Germline genetic modification through gene edited spermatogonia provides an effective alternative to how these models are developed. Here, we report an improved technique of gene editing in spermatogonia of pigs using CRISPR-Cas9 to generate different edits that reflect the genotypes of human diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Masculino , Mutação , Espermatogônias , Suínos
4.
Front Endocrinol (Lausanne) ; 13: 892342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757431

RESUMO

An in vitro system to study testicular maturation in rats, an important model organism for reproductive toxicity, could serve as a platform for high-throughput drug and toxicity screening in a tissue specific context. In vitro maturation of somatic cells and spermatogonia in organ culture systems has been reported. However, this has been a challenge for organoids derived from dissociated testicular cells. Here, we report generation and maintenance of rat testicular organoids in microwell culture for 28 days. We find that rat organoids can be maintained in vitro only at lower than ambient O2 tension of 15% and organoids cultured at 34°C have higher somatic cell maturation and spermatogonial differentiation potential compared to cultures in 37°C. Upon exposure to known toxicants, phthalic acid mono-2-ethylhexyl ester and cadmium chloride, the organoids displayed loss of tight-junction protein Claudin 11 and altered transcription levels of somatic cell markers that are consistent with previous reports in animal models. Therefore, the microwell-derived rat testicular organoids described here can serve as a novel platform for the study of testicular cell maturation and reproductive toxicity in vitro.


Assuntos
Organoides , Espermatogônias , Animais , Diferenciação Celular , Masculino , Ratos , Espermatogônias/metabolismo , Testículo/metabolismo
5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562927

RESUMO

Spermatogonial stem cells (SSCs) provide the basis for lifelong male fertility through self-renewal and differentiation. Prepubertal male cancer patients may be rendered infertile by gonadotoxic chemotherapy and, unlike sexually mature men, cannot store sperm. Alternatively, testicular biopsies taken prior to treatment may be used to restore fertility in adulthood. Testicular SSC populations are limited, and in vitro culture systems are required to increase numbers of SSCs for treatment, demanding culture systems for SSC propagation. Using the pig as a non-rodent model, we developed culture systems to expand spermatogonia from immature testis tissue, comparing different feeders (Sertoli cells, peritubular myoid cells (PMCs) and pig fetal fibroblasts (PFFs)). Spermatogonia co-cultured with Sertoli cells, PMCs and PFFs had comparable rates of proliferation and apoptosis. To elucidate the mechanism behind the beneficial nature of feeder layers, we investigated the role of extracellular vesicles in crosstalk between spermatogonia and feeder cells. Sertoli cell-released exosomes are incorporated by spermatogonia, and inhibition of exosomal release reduces spermatogonial proliferation. Together, these results show that PMCs, PFFs and Sertoli cells promote spermatogonial proliferation in co-culture, with exosomal exchange representing one possible mechanism. Further characterization of exosomal cargo may ultimately allow the development of feeder-free culture systems for clinical use.


Assuntos
Vesículas Extracelulares , Espermatogônias , Adulto , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , Masculino , Células de Sertoli , Suínos , Testículo
6.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948348

RESUMO

Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility. A robust system that allows for scalable expansion of spermatogonia within a controlled environment is therefore required. Stirred suspension culture has been applied to different types of stem cells but has so far not been explored for spermatogonia. Here, we report that pre-pubertal porcine spermatogonia proliferate more in bioreactor suspension culture, compared with static culture. Interestingly, oxygen tension provides an avenue to modulate spermatogonia status, with culture under 10% oxygen retaining a more undifferentiated state and reducing proliferation in comparison with the conventional approach of culturing under ambient oxygen levels. Spermatogonia grown in bioreactors upregulate the Wnt/ ß-catenin pathway, which, along with enhanced gas and nutrient exchange observed in bioreactor culture, may synergistically account for higher spermatogonia proliferation. Therefore, stirred suspension bioreactors provide novel platforms to culture spermatogonia in a scalable manner and with minimal handling.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Proliferação de Células , Espermatogônias/fisiologia , Suspensões , Via de Sinalização Wnt , Animais , Masculino , Espermatogônias/metabolismo , Sus scrofa
7.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571914

RESUMO

Spermatogonia are stem and progenitor cells responsible for maintaining mammalian spermatogenesis. Preserving the balance between self-renewal of spermatogonial stem cells (SSCs) and differentiation is critical for spermatogenesis and fertility. Ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) is highly expressed in spermatogonia of many species; however, its functional role has not been identified. Here, we aimed to understand the role of UCH-L1 in murine spermatogonia using a Uch-l1-/- mouse model. We confirmed that UCH-L1 is expressed in undifferentiated and early-differentiating spermatogonia in the post-natal mammalian testis. The Uch-l1-/- mice showed reduced testis weight and progressive degeneration of seminiferous tubules. Single-cell transcriptome analysis detected a dysregulated metabolic profile in spermatogonia of Uch-l1-/- compared to wild-type mice. Furthermore, cultured Uch-l1-/- SSCs had decreased capacity in regenerating full spermatogenesis after transplantation in vivo and accelerated oxidative phosphorylation (OXPHOS) during maintenance in vitro. Together, these results indicate that the absence of UCH-L1 impacts the maintenance of SSC homeostasis and metabolism and impacts the differentiation competence. Metabolic perturbations associated with loss of UCH-L1 appear to underlie a reduced capacity for supporting spermatogenesis and fertility with age. This work is one step further in understanding the complex regulatory circuits underlying SSC function.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Mitocôndrias/patologia , Espermatogênese , Espermatogônias/patologia , Células-Tronco/patologia , Ubiquitina Tiolesterase/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Espermatogônias/metabolismo , Células-Tronco/metabolismo
8.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226276

RESUMO

DNA repair proteins are critical to the maintenance of genomic integrity. Specific types of genotoxic factors, including reactive oxygen species generated during normal cellular metabolism or as a result of exposure to exogenous oxidative agents, frequently leads to "ragged" single-strand DNA breaks. The latter exhibits abnormal free DNA ends containing either a 5'-hydroxyl or 3'-phosphate requiring correction by the dual function enzyme, polynucleotide kinase phosphatase (PNKP), before DNA polymerase and ligation reactions can occur to seal the break. Pnkp gene deletion during early murine development leads to lethality; in contrast, the role of PNKP in adult mice is unknown. To investigate the latter, we used an inducible conditional mutagenesis approach to cause global disruption of the Pnkp gene in adult mice. This resulted in a premature aging-like phenotype, characterized by impaired growth of hair follicles, seminiferous tubules, and neural progenitor cell populations. These results point to an important role for PNKP in maintaining the normal growth and survival of these murine progenitor populations.


Assuntos
Autorrenovação Celular/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Apoptose , Biomarcadores , Diferenciação Celular/genética , Dano ao DNA , Reparo do DNA , Derme/citologia , Derme/metabolismo , Imunofluorescência , Células Germinativas/citologia , Células Germinativas/metabolismo , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Hiperpigmentação/genética , Imuno-Histoquímica , Melaninas/metabolismo , Camundongos , Camundongos Knockout
9.
FASEB J ; 35(5): e21513, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811704

RESUMO

Human male reproductive development has a prolonged prepubertal period characterized by juvenile quiescence of germ cells with immature spermatogonial stem cell (SSC) precursors (gonocytes) present in the testis for an extended period of time. The metabolism of gonocytes is not defined. We demonstrate with mitochondrial ultrastructure studies via TEM and IHC and metabolic flux studies with UHPLC-MS that a distinct metabolic transition occurs during the maturation to SSCs. The mitochondrial ultrastructure of prepubertal human spermatogonia is shared with prepubertal pig spermatogonia. The metabolism of early prepubertal porcine spermatogonia (gonocytes) is characterized by the reliance on OXPHOS fuelled by oxidative decarboxylation of pyruvate. Interestingly, at the same time, a high amount of the consumed pyruvate is also reduced and excreted as lactate. With maturation, prepubertal spermatogonia show a metabolic shift with decreased OXHPOS and upregulation of the anaerobic metabolism-associated uncoupling protein 2 (UCP2). This shift is accompanied with stem cell specific promyelocytic leukemia zinc finger protein (PLZF) protein expression and glial cell-derived neurotropic factor (GDNF) pathway activation. Our results demonstrate that gonocytes differently from mature spermatogonia exhibit unique metabolic demands that must be attained to enable their maintenance and growth in vitro.


Assuntos
Regulação da Expressão Gênica , Células Germinativas/metabolismo , Estresse Oxidativo , Células-Tronco/metabolismo , Testículo/metabolismo , Animais , Células Germinativas/citologia , Glicólise , Humanos , Masculino , Potencial da Membrana Mitocondrial , Fenótipo , Células-Tronco/citologia , Suínos , Testículo/citologia
10.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670439

RESUMO

The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Adulto , Células-Tronco Germinativas Adultas/citologia , Animais , Células Cultivadas , Humanos , Masculino , Espermatogônias/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA