Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Biol Chem ; 300(9): 107668, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128716

RESUMO

The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.

2.
Front Immunol ; 15: 1384623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044819

RESUMO

Introduction: Malignant peripheral nerve sheath tumors (MPNST) pose a significant therapeutic challenge due to high recurrence rates after surgical resection and a largely ineffective response to traditional chemotherapy. An alternative treatment strategy is oncolytic viroimmunotherapy, which can elicit a durable and systemic antitumor immune response and is Food and Drug Administration (FDA)-approved for the treatment of melanoma. Unfortunately, only a subset of patients responds completely, underscoring the need to address barriers hindering viroimmunotherapy effectiveness. Methods: Here we investigated the therapeutic utility of targeting key components of the MPNST immunosuppressive microenvironment to enhance viroimmunotherapy's antitumor efficacy in three murine models, one of which showed more immunogenic characteristics than the others. Results: Myelomodulatory therapy with pexidartinib, a small molecule inhibitor of CSF1R tyrosine kinase, and the oncolytic herpes simplex virus T-VEC exhibited the most significant increase in median survival time in the highly immunogenic model. Additionally, targeting myeloid cells with the myelomodulatory therapy trabectedin, a small molecule activator of caspase-8 dependent apoptosis, augmented the survival benefit of T-VEC in a less immunogenic MPNST model. However, tumor regressions or shrinkages were not observed. Depletion experiments confirmed that the enhanced survival benefit relied on a T cell response. Furthermore, flow cytometry analysis following combination viroimmunotherapy revealed decreased M2 macrophages and myeloid-derived suppressor cells and increased tumor-specific gp70+ CD8 T cells within the tumor microenvironment. Discussion: In summary, our findings provide compelling evidence for the potential to leverage viroimmunotherapy with myeloid cell targeting against MPNST and warrant further investigation.


Assuntos
Modelos Animais de Doenças , Terapia Viral Oncolítica , Microambiente Tumoral , Animais , Terapia Viral Oncolítica/métodos , Camundongos , Microambiente Tumoral/imunologia , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Imunoterapia/métodos , Humanos , Terapia Combinada , Feminino , Camundongos Endogâmicos C57BL , Neoplasias de Bainha Neural/terapia , Neoplasias de Bainha Neural/imunologia , Neoplasias de Bainha Neural/genética , Aminopiridinas , Pirróis
4.
Cancer Res Commun ; 4(8): 1978-1990, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39015091

RESUMO

Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this study, we investigated the metastatic melanoma tumor microbiome and its potential roles in association with clinical outcomes, such as survival, in patients with metastatic disease treated with immune checkpoint inhibitors (ICI). Baseline tumor samples were collected from 71 patients with metastatic melanoma before treatment with ICIs. Bulk RNA sequencing (RNA-seq) was conducted on the formalin-fixed, paraffin-embedded and fresh frozen tumor samples. Durable clinical benefit (primary clinical endpoint) following ICIs was defined as overall survival >24 months and no change to the primary drug regimen (responders). We processed RNA-seq reads to carefully identify exogenous sequences using the {exotic} tool. The age of the 71 patients with metastatic melanoma ranged from 24 to 83 years, 59% were male, and 55% survived >24 months following the initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances in immunotherapy-responsive versus nonresponsive tumors. Responders showed significant enrichment of bacteriophages in the phylum Uroviricota, and nonresponders showed enrichment of several bacteria, including Campylobacter jejuni. These microbes correlated with immune-related gene expression signatures. Finally, we found that models for predicting prolonged survival with immunotherapy using both microbe abundances and gene expression outperformed models using either dataset alone. Our findings warrant further investigation and potentially support therapeutic strategies to modify the tumor microbiome in order to improve treatment outcomes with ICIs. SIGNIFICANCE: We analyzed the tumor microbiome and interactions with genes and pathways in metastatic melanoma treated with immunotherapy and identified several microbes associated with immunotherapy response and immune-related gene expression signatures. Machine learning models that combined microbe abundances and gene expression outperformed models using either dataset alone in predicting immunotherapy responses.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Microbiota , Humanos , Melanoma/tratamento farmacológico , Melanoma/microbiologia , Melanoma/imunologia , Melanoma/secundário , Masculino , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Microbiota/efeitos dos fármacos , Idoso de 80 Anos ou mais , Adulto Jovem , Resultado do Tratamento , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/microbiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Metástase Neoplásica , Prognóstico
5.
Clin Transl Sci ; 17(6): e13858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932491

RESUMO

Cognitive or motor impairment is common among individuals with neurofibromatosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many as 70% of children with NF1 report difficulties with spatial/working memory, attention, executive function, and fine motor movements. In contrast to the utilization of various Nf1 mouse models, here we employ an NF1+/ex42del miniswine model to evaluate the mechanisms and characteristics of these presentations, taking advantage of a large animal species more like human anatomy and physiology. The prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-type miniswine were examined longitudinally, revealing abnormalities in mature oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus and motor cortex, supporting the role of disruption in inhibitory neurotransmission in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del miniswine demonstrated slower and shorter steps, indicative of a balance-preserving response commonly observed in NF1 patients, and progressive memory and learning impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del miniswine as a valuable resource for assessing cognitive and motor impairments associated with NF1, investigating the involvement of specific neural circuits and glia in these processes, and evaluating potential therapeutic interventions.


Assuntos
Modelos Animais de Doenças , Neurofibromatose 1 , Animais , Neurofibromatose 1/fisiopatologia , Neurofibromatose 1/complicações , Neurofibromatose 1/metabolismo , Camundongos , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Comportamento Animal , Masculino , Hipocampo/patologia , Hipocampo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Feminino
6.
Cancer Res Commun ; 4(7): 1690-1701, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904265

RESUMO

Tumor hypoxia has been shown to predict poor patient outcomes in several cancer types, partially because it reduces radiation's ability to kill cells. We hypothesized that some of the clinical effects of hypoxia could also be due to its impact on the tumor microbiome. Therefore, we examined the RNA sequencing data from the Oncology Research Information Exchange Network database of patients with colorectal cancer treated with radiotherapy. We identified microbial RNAs for each tumor and related them to the hypoxic gene expression scores calculated from host mRNA. Our analysis showed that the hypoxia expression score predicted poor patient outcomes and identified tumors enriched with certain microbes such as Fusobacterium nucleatum. The presence of other microbes, such as Fusobacterium canifelinum, predicted poor patient outcomes, suggesting a potential interaction between hypoxia, the microbiome, and radiation response. To experimentally investigate this concept, we implanted CT26 colorectal cancer cells into immune-competent BALB/c and immune-deficient athymic nude mice. After growth, in which tumors passively acquired microbes from the gastrointestinal tract, we harvested tumors, extracted nucleic acids, and sequenced host and microbial RNAs. We stratified tumors based on their hypoxia score and performed a metatranscriptomic analysis of microbial gene expression. In addition to hypoxia-tropic and -phobic microbial populations, analysis of microbial gene expression at the strain level showed expression differences based on the hypoxia score. Thus, hypoxia gene expression scores seem to associate with different microbial populations and elicit an adaptive transcriptional response in intratumoral microbes, potentially influencing clinical outcomes. SIGNIFICANCE: Tumor hypoxia reduces radiotherapy efficacy. In this study, we explored whether some of the clinical effects of hypoxia could be due to interaction with the tumor microbiome. Hypoxic gene expression scores associated with certain microbes and elicited an adaptive transcriptional response in others that could contribute to poor clinical outcomes.


Assuntos
Neoplasias Colorretais , Camundongos Endogâmicos BALB C , Camundongos Nus , Hipóxia Tumoral , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/microbiologia , Animais , Camundongos , Humanos , Hipóxia Tumoral/efeitos da radiação , Microbiota/efeitos da radiação , Linhagem Celular Tumoral , Feminino
7.
JCO Precis Oncol ; 8: e2300325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820476

RESUMO

PURPOSE: Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS: Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS: We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION: These results might have broad implications for the clinical management and surveillance of sarcoma.


Assuntos
Metilação de DNA , Progressão da Doença , Interleucina-17 , Humanos , Interleucina-17/genética , Metástase Neoplásica/genética , Perfilação da Expressão Gênica , Epigênese Genética , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Transcriptoma , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia
8.
Antioxidants (Basel) ; 13(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790692

RESUMO

Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by severe postoperative wound healing complications due to damage to the surrounding normal tissues. Thus, there is a need to develop therapeutic approaches to reduce nRT toxicities. Avasopasem manganese (AVA) is a selective superoxide dismutase mimetic that protects against IR-induced oral mucositis and lung fibrosis. We tested the efficacy of AVA in enhancing RT in STSs and in promoting wound healing. Using colony formation assays and alkaline comet assays, we report that AVA selectively enhanced the STS (liposarcoma, fibrosarcoma, leiomyosarcoma, and MPNST) cellular response to radiation compared to normal dermal fibroblasts (NDFs). AVA is believed to selectively enhance radiation therapy by targeting differential hydrogen peroxide clearance in tumor cells compared to non-malignant cells. STS cells demonstrated increased catalase protein levels and activity compared to normal fibroblasts. Additionally, NDFs showed significantly higher levels of GPx1 activity compared to STSs. The depletion of glutathione using buthionine sulfoximine (BSO) sensitized the NDF cells to AVA, suggesting that GPx1 may, in part, facilitate the selective toxicity of AVA. Finally, AVA significantly accelerated wound closure in a murine model of wound healing post RT. Our data suggest that AVA may be a promising combination strategy for nRT therapy in STSs.

9.
Cancer Res Commun ; 4(2): 293-302, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38259095

RESUMO

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10%-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, microbial graph attention (MEGA), to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of nine cancer centers in the Oncology Research Information Exchange Network. This package has three unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2,704 tumor RNA sequencing samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors. SIGNIFICANCE: Studying the tumor microbiome in high-throughput sequencing data is challenging because of the extremely sparse data matrices, heterogeneity, and high likelihood of contamination. We present a new deep learning tool, MEGA, to refine the organisms that interact with tumors.


Assuntos
Microbiota , Humanos , Filogenia , Microbiota/genética , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala
10.
Anal Chem ; 96(4): 1606-1613, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215004

RESUMO

The glycosaminoglycan hyaluronan (HA) plays important roles in diverse physiological functions where the distribution of its molecular weight (MW) can influence its behavior and is known to change in response to disease conditions. During inflammation, HA undergoes a covalent modification in which heavy chain subunits of the inter-alpha-inhibitor family of proteins are transferred to its structure, forming heavy chain-HA (HC•HA) complexes. While limited assessments of HC•HA have been performed previously, determining the size distribution of its HA component remains a challenge. Here, we describe a selective method for extracting HC•HA from mixtures that yields material amenable to MW analysis with a solid-state nanopore sensor. After demonstrating the approach in vitro, we validate extraction of HC•HA from osteoarthritic human synovial fluid as a model complex biological matrix. Finally, we apply our technique to pathophysiology by measuring the size distributions of HC•HA and total HA in an equine model of synovitis.


Assuntos
Ácido Hialurônico , Nanoporos , Humanos , Animais , Cavalos , Ácido Hialurônico/química , alfa-Globulinas/metabolismo , Inflamação , Líquido Sinovial
11.
Mucosal Immunol ; 16(6): 767-775, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783278

RESUMO

The early migratory phase of pulmonary helminth infections is characterized by tissue injury leading to the release of the alarmin interleukin (IL)-33 and subsequent induction of type 2 immune responses. We recently described a role for IL-17A, through suppression of interferon (IFN)-γ, as an important inducer of type 2 responses during infection with the lung-migrating rodent nematode Nippostrongylus brasiliensis. Here, we aimed to investigate the interaction between IL-17A and IL-33 during the early lung migratory stages of N. brasiliensis infection. In this brief report, we demonstrate that deficiency of IL-17A leads to impaired IL-33 expression and secretion early in infection, independent of IL-17A suppression of IFN-γ. Neutrophil-depletion experiments, which dramatically reduce lung injury, revealed that neutrophils are primarily responsible for the IL-17A-dependent release of IL-33 into the airways. Taken together, our results reveal an IL-17A-neutrophil-axis that can drive IL-33 during helminth infection, highlighting an additional pathway by which IL-17A regulates pulmonary type 2 immunity.


Assuntos
Nematoides , Neutrófilos , Animais , Camundongos , Interleucina-17/metabolismo , Interleucina-33 , Pulmão , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL
12.
Sci Rep ; 13(1): 14798, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684258

RESUMO

CRISPR/Cas9 gene editing has evolved from a simple laboratory tool to a powerful method of in vivo genomic engineering. As the applications of CRISPR/Cas9 technology have grown, the need to characterize the breadth and depth of indels generated by editing has expanded. Traditionally, investigators use one of several publicly-available platforms to determine CRISPR/Cas9-induced indels in an edited sample. However, to our knowledge, there has not been a cross-platform comparison of available indel analysis software in samples generated from somatic in vivo mouse models. Our group has pioneered using CRISPR/Cas9 to generate somatic primary mouse models of malignant peripheral nerve sheath tumors (MPNSTs) through genetic editing of Nf1. Here, we used sequencing data from the in vivo editing of the Nf1 gene in our CRISPR/Cas9 tumorigenesis model to directly compare results across four different software platforms. By analyzing the same genetic target across a wide panel of cell lines with the same sequence file, we are able to draw systematic conclusions about the differences in these software programs for analysis of in vivo-generated indels. Surprisingly, we report high variability in the reported number, size, and frequency of indels across each software platform. These data highlight the importance of selecting indel analysis platforms specific to the context that the gene editing approach is being applied. Taken together, this analysis shows that different software platforms can report widely divergent indel data from the same sample, particularly if larger indels are present, which are common in somatic, in vivo CRISPR/Cas9 tumor models.


Assuntos
Sistemas CRISPR-Cas , Carcinogênese , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Linhagem Celular , Software
13.
Clin Cancer Res ; 29(17): 3484-3497, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410426

RESUMO

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are lethal, Ras-driven sarcomas that lack effective therapies. We investigated effects of targeting cyclin-dependent kinases 4 and 6 (CDK4/6), MEK, and/or programmed death-ligand 1 (PD-L1) in preclinical MPNST models. EXPERIMENTAL DESIGN: Patient-matched MPNSTs and precursor lesions were examined by FISH, RNA sequencing, IHC, and Connectivity-Map analyses. Antitumor activity of CDK4/6 and MEK inhibitors was measured in MPNST cell lines, patient-derived xenografts (PDX), and de novo mouse MPNSTs, with the latter used to determine anti-PD-L1 response. RESULTS: Patient tumor analyses identified CDK4/6 and MEK as actionable targets for MPNST therapy. Low-dose combinations of CDK4/6 and MEK inhibitors synergistically reactivated the retinoblastoma (RB1) tumor suppressor, induced cell death, and decreased clonogenic survival of MPNST cells. In immune-deficient mice, dual CDK4/6-MEK inhibition slowed tumor growth in 4 of 5 MPNST PDXs. In immunocompetent mice, combination therapy of de novo MPNSTs caused tumor regression, delayed resistant tumor outgrowth, and improved survival relative to monotherapies. Drug-sensitive tumors that regressed contained plasma cells and increased cytotoxic T cells, whereas drug-resistant tumors adopted an immunosuppressive microenvironment with elevated MHC II-low macrophages and increased tumor cell PD-L1 expression. Excitingly, CDK4/6-MEK inhibition sensitized MPNSTs to anti-PD-L1 immune checkpoint blockade (ICB) with some mice showing complete tumor regression. CONCLUSIONS: CDK4/6-MEK inhibition induces a novel plasma cell-associated immune response and extended antitumor activity in MPNSTs, which dramatically enhances anti-PD-L1 therapy. These preclinical findings provide strong rationale for clinical translation of CDK4/6-MEK-ICB targeted therapies in MPNST as they may yield sustained antitumor responses and improved patient outcomes.


Assuntos
Neurofibrossarcoma , Camundongos , Humanos , Animais , Neurofibrossarcoma/tratamento farmacológico , Plasmócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Microambiente Tumoral , Quinase 4 Dependente de Ciclina
14.
J Neurotrauma ; 40(19-20): 2205-2216, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341029

RESUMO

Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; n = 68), HS only (n = 9), or sham trauma (n = 12). Markers of systemic (e.g., glucose, lactate) and neural functioning were obtained at baseline, and at 35 and 295 min post-trauma. Opposite and approximately twofold differences existed for both magnitude (device > head) and duration (head > device) of quantified injury biomechanics. Circulating levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase L1 (UCH-L1) demonstrated differential sensitivity for both general trauma (HS) and neurotrauma (TBI+HS) relative to shams in a temporally dynamic fashion. GFAP and NfL were both strongly associated with changes in systemic markers during general trauma and exhibited consistent time-dependent changes in individual sham animals. Finally, circulating GFAP was associated with histopathological markers of diffuse axonal injury and blood-brain barrier breach, as well as variations in device kinematics following TBI+HS. Current findings therefore highlight the need to directly quantify injury biomechanics with head mounted sensors and suggest that GFAP, NfL, and UCH-L1 are sensitive to multiple forms of trauma rather than having a single pathological indication (e.g., GFAP = astrogliosis).


Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Masculino , Feminino , Suínos , Animais , Fenômenos Biomecânicos , Biomarcadores , Modelos Animais , Proteína Glial Fibrilar Ácida , Ubiquitina Tiolesterase
15.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292921

RESUMO

Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this study, we investigated the metastatic melanoma tumor microbiome and potential roles in association with clinical outcomes, such as survival, in patients with metastatic disease treated with immune checkpoint inhibitors (ICIs). Baseline tumor samples were collected from 71 patients with metastatic melanoma before treatment with ICIs. Bulk RNA-seq was conducted on the formalin-fixed paraffin-embedded (FFPE) tumor samples. Durable clinical benefit (primary clinical endpoint) following ICIs was defined as overall survival ≥24 months and no change to the primary drug regimen (responders). We processed RNA-seq reads to carefully identify exogenous sequences using the {exotic} tool. The 71 patients with metastatic melanoma ranged in age from 24 to 83 years, 59% were male, and 55% survived >24 months following the initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances in immunotherapy responsive versus non-responsive tumors. Responders showed significant enrichment of several microbes including Fusobacterium nucleatum, and non-responders showed enrichment of fungi, as well as several bacteria. These microbes correlated with immune-related gene expression signatures. Finally, we found that models for predicting prolonged survival with immunotherapy using both microbe abundances and gene expression outperformed models using either dataset alone. Our findings warrant further investigation and potentially support therapeutic strategies to modify the tumor microbiome in order to improve treatment outcomes with ICIs.

16.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292990

RESUMO

Evidence supports significant interactions among microbes, immune cells, and tumor cells in at least 10-20% of human cancers, emphasizing the importance of further investigating these complex relationships. However, the implications and significance of tumor-related microbes remain largely unknown. Studies have demonstrated the critical roles of host microbes in cancer prevention and treatment responses. Understanding interactions between host microbes and cancer can drive cancer diagnosis and microbial therapeutics (bugs as drugs). Computational identification of cancer-specific microbes and their associations is still challenging due to the high dimensionality and high sparsity of intratumoral microbiome data, which requires large datasets containing sufficient event observations to identify relationships, and the interactions within microbial communities, the heterogeneity in microbial composition, and other confounding effects that can lead to spurious associations. To solve these issues, we present a bioinformatics tool, MEGA, to identify the microbes most strongly associated with 12 cancer types. We demonstrate its utility on a dataset from a consortium of 9 cancer centers in the Oncology Research Information Exchange Network (ORIEN). This package has 3 unique features: species-sample relations are represented in a heterogeneous graph and learned by a graph attention network; it incorporates metabolic and phylogenetic information to reflect intricate relationships within microbial communities; and it provides multiple functionalities for association interpretations and visualizations. We analyzed 2704 tumor RNA-seq samples and MEGA interpreted the tissue-resident microbial signatures of each of 12 cancer types. MEGA can effectively identify cancer-associated microbial signatures and refine their interactions with tumors.

17.
Adv Med Educ Pract ; 14: 373-380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101695

RESUMO

Objective: This study compared knowledge attainment and student enjoyment and engagement between clinical case vignette, patient-testimony videos and mixed reality (MR) teaching via the Microsoft HoloLens 2, all delivered remotely to third year medical students. The feasibility of conducting MR teaching on a large scale was also assessed. Setting & Participants: Medical students in Year 3 at Imperial College London participated in three online teaching sessions, one in each format. All students were expected to attend these scheduled teaching sessions and to complete the formative assessment. Inclusion of their data used as part of the research trial was optional. Primary and Secondary Outcome Measures: The primary outcome measure was performance on a formative assessment, which served to compare knowledge attainment between three forms of online learning. Moreover, we aimed to explore student engagement with each form of learning via a questionnaire, and also feasibility of applying MR as a teaching tool on a large scale. Comparisons between performances on the formative assessment between the three groups were investigated using a repeated measures two-way ANOVA. Engagement and enjoyment were also analysed in the same manner. Results: A total of 252 students participated in the study. Knowledge attainment of students using MR was comparable with the other two methods. Participants reported higher enjoyment and engagement (p<0.001) for the case vignette method, compared with MR and video-based teaching. There was no difference in enjoyment or engagement ratings between MR and the video-based methods. Conclusion: This study demonstrated that the implementation of MR is an effective, acceptable, and feasible way of teaching clinical medicine to undergraduate students on a large scale. However, case-based tutorials were found to be favoured most by students. Future work could further explore the best uses for MR teaching within the medical curriculum.

18.
Adv Health Sci Educ Theory Pract ; 28(4): 1171-1189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36859731

RESUMO

Previous literature has explored unconscious racial biases in clinical education and medicine, finding that people with darker skin tones can be underrepresented in learning resources and managed differently in a clinical setting. This study aimed to examine whether patient skin colour can affect the diagnostic ability and confidence of medical students, and their cognitive reasoning processes. We presented students with 12 different clinical presentations on both white skin (WS) and non-white skin (NWS). A think aloud (TA) study was conducted to explore students' cognitive reasoning processes (n = 8). An online quiz was also conducted where students submitted a diagnosis and confidence level for each clinical presentation (n = 185). In the TA interviews, students used similar levels of information gathering and analytical reasoning for each skin type but appeared to display increased uncertainty and reduced non-analytical reasoning methods for the NWS images compared to the WS images. In the online quiz, students were significantly more likely to accurately diagnose five of the 12 clinical presentations (shingles, cellulitis, Lyme disease, eczema and meningococcal disease) on WS compared to NWS (p < 0.01). With regards to students' confidence, they were significantly more confident diagnosing eight of the 12 clinical presentations (shingles, cellulitis, Lyme disease, eczema, meningococcal disease, urticaria, chickenpox and Kawasaki disease) on WS when compared to NWS (p < 0.01). These findings highlight the need to improve teaching resources to include a greater diversity of skin colours exhibiting clinical signs, to improve students' knowledge and confidence, and ultimately, to avoid patients being misdiagnosed due to the colour of their skin.


Assuntos
Eczema , Herpes Zoster , Doença de Lyme , Infecções Meningocócicas , Estudantes de Medicina , Humanos , Pigmentação da Pele , Estudantes de Medicina/psicologia , Celulite (Flegmão) , Competência Clínica
19.
Curr Issues Mol Biol ; 45(2): 1218-1232, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826025

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive form of cancer that accounts for half of all pediatric soft tissue sarcomas. Little progress has been made in improving survival outcomes over the past three decades. Mouse models of rhabdomyosarcoma are a critical component of translational research aimed at understanding tumor biology and developing new, improved therapies. Though several models exist, many common mutations found in human rhabdomyosarcoma tumors remain unmodeled and understudied. This study describes a new model of embryonal rhabdomyosarcoma driven by the loss of Nf1 and Ink4a/Arf, two mutations commonly found in patient tumors. We find that this new model is histologically similar to other previously-published rhabdomyosarcoma models, although it substantially differs in the time required for tumor onset and in tumor growth kinetics. We also observe unique sex-dependent phenotypes in both primary and newly-developed orthotopic syngeneic allograft tumors that are not present in previous models. Using in vitro and in vivo studies, we examined the response to vincristine, a component of the standard-of-care chemotherapy for RMS. The findings from this study provide valuable insight into a new mouse model of rhabdomyosarcoma that addresses an ongoing need for patient-relevant animal models to further translational research.

20.
Adv Sci (Weinh) ; 10(10): e2205995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36727291

RESUMO

Tumor hypoxia drives resistance to many cancer therapies, including radiotherapy and chemotherapy. Methods that increase tumor oxygen pressures, such as hyperbaric oxygen therapy and microbubble infusion, are utilized to improve the responses to current standard-of-care therapies. However, key obstacles remain, in particular delivery of oxygen at the appropriate dose and with optimal pharmacokinetics. Toward overcoming these hurdles, gas-entrapping materials (GeMs) that are capable of tunable oxygen release are formulated. It is shown that injection or implantation of these materials into tumors can mitigate tumor hypoxia by delivering oxygen locally and that these GeMs enhance responsiveness to radiation and chemotherapy in multiple tumor types. This paper also demonstrates, by comparing an oxygen (O2 )-GeM to a sham GeM, that the former generates an antitumorigenic and immunogenic tumor microenvironment in malignant peripheral nerve sheath tumors. Collectively the results indicate that the use of O2 -GeMs is promising as an adjunctive strategy for the treatment of solid tumors.


Assuntos
Oxigenoterapia Hiperbárica , Neoplasias , Humanos , Oxigênio , Neoplasias/tratamento farmacológico , Hipóxia Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA