Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Artif Intell ; 7: 1328530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726306

RESUMO

Food and nutrition are a steadfast essential to all living organisms. With specific reference to humans, the sufficient and efficient supply of food is a challenge as the world population continues to grow. Artificial Intelligence (AI) could be identified as a plausible technology in this 5th industrial revolution in bringing us closer to achieving zero hunger by 2030-Goal 2 of the United Nations Sustainable Development Goals (UNSDG). This goal cannot be achieved unless the digital divide among developed and underdeveloped countries is addressed. Nevertheless, developing and underdeveloped regions fall behind in economic resources; however, they harbor untapped potential to effectively address the impending demands posed by the soaring world population. Therefore, this study explores the in-depth potential of AI in the agriculture sector for developing and under-developed countries. Similarly, it aims to emphasize the proven efficiency and spin-off applications of AI in the advancement of agriculture. Currently, AI is being utilized in various spheres of agriculture, including but not limited to crop surveillance, irrigation management, disease identification, fertilization practices, task automation, image manipulation, data processing, yield forecasting, supply chain optimization, implementation of decision support system (DSS), weed control, and the enhancement of resource utilization. Whereas AI supports food safety and security by ensuring higher crop yields that are acquired by harnessing the potential of multi-temporal remote sensing (RS) techniques to accurately discern diverse crop phenotypes, monitor land cover dynamics, assess variations in soil organic matter, predict soil moisture levels, conduct plant biomass modeling, and enable comprehensive crop monitoring. The present study identifies various challenges, including financial, infrastructure, experts, data availability, customization, regulatory framework, cultural norms and attitudes, access to market, and interdisciplinary collaboration, in the adoption of AI for developing nations with their subsequent remedies. The identification of challenges and opportunities in the implementation of AI could ignite further research and actions in these regions; thereby supporting sustainable development.

2.
Vaccines (Basel) ; 11(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766182

RESUMO

Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.

3.
AMB Express ; 12(1): 8, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102445

RESUMO

Dengue is an arboviral disease, which threatens almost half the global population, and has emerged as the most significant of current global public health challenges. In this study, we prepared dengue virus-like particles (DENV-LPs) consisting of Capsid-premembrane-envelope (CprME) and premembrane-envelope (prME) polypeptides from serotype 1 and 4, which were expressed in the silkworms using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid. 1CprME, 1prME, 4CprME, and 4prME expressed proteins in hemolymph, and the molecular weight of the purified proteins was 55 kDa, respectively. The purified polypeptides formed spherical Dengue virus-like particles (DENV-LPs) with ~ 30-55 nm in diameter. The immunoelectron microscopy (IEM) images revealed antigens to the surface of a lipid bilayer of DENV-LPs. The heparin-binding assay shows a positive relationship between absorbance and E protein domain III (EDIII) quantity, which is supported by the isothermal titration calorimetry assay. This indicates a moderate binding affinity between heparin and DENV-LP. The high correlation between patient sera and DENV-LP reactivities revealed that these DENV-LPs shared similar epitopes with the natural dengue virus. IgG elicitation studies in mice have demonstrated that DENV-LPs/CPrMEs elicit a stronger immune response than DENV-LP/prMEs, which lends credence to this claim.

4.
Protein Expr Purif ; 190: 106010, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737040

RESUMO

Recombinantly expressed VP1 of norovirus self-assembled and formed norovirus-like particles (NoV-LPs). This native VP1 was expressed using the Bombyx mori nucleopolyhedrovirus (BmNPV) expression system in silkworm larva. NoV-LPs were collected from silkworm fat body lysate by density gradient centrifugation. To improve the purity of the NoV-LP, the proteins were further purified using immobilized metal affinity chromatography based on the surface exposed side chain of histidine residues. The additional purification led to a highly purified virus-like particle (VLP). The morphology and size of the purified VLPs were examined using a transmission electron microscope, and dynamic light scattering revealed a monodispersed spherical morphology with a diameter of 34 nm. The purified product had a purity of >90% with a recovery yield of 48.7% (equivalent to 930 µg) from crude lysate, obtained from seven silkworm larvae. In addition, the purified VLP could be recognized by antibodies against GII norovirus in sandwich enzyme-linked immunosorbent assay, which indicated that the silkworm-derived VLP is biologically functional as a NoV-LP in its native state, is structurally correct, and exerts its biological function. Our results suggest that the silkworm-derived NoV-LP may be useful for subsequent applications, such as in a vaccine platform. Moreover, the silkworm-based expression system is known for its robustness, facile up-scalability, and relatively low expense compared to insect cell systems.


Assuntos
Partículas Artificiais Semelhantes a Vírus/química , Bombyx/genética , Norovirus , Proteínas Virais de Fusão , Animais , Bombyx/metabolismo , Norovirus/química , Norovirus/genética , Norovirus/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/isolamento & purificação
5.
Biosensors (Basel) ; 11(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34677332

RESUMO

The treatment for mosquito-borne viral diseases such as dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV) has become difficult due to delayed diagnosis processes. In addition, sharing the same transmission media and similar symptoms at the early stage of infection of these diseases has become more critical for early diagnosis. To overcome this, a common platform that can identify the virus with high sensitivity and selectivity, even for the different serotypes, is in high demand. In this study, we have attempted an electrochemical impedimetric method to detect the ZIKV, DENV, and CHIKV using their corresponding antibody-conjugated sensor electrodes. The significance of this method is emphasized on the fabrication of a common matrix of gold-polyaniline and sulfur, nitrogen-doped graphene quantum dot nanocomposites (Au-PAni-N,S-GQDs), which have a strong impedimetric response based only on the conjugated antibody, resulting in minimum cross-reactivity for the detection of various mosquito-borne viruses, separately. As a result, four serotypes of DENV and ZIKV, and CHIKV have been detected successfully with an LOD of femtogram mL-1.


Assuntos
Técnicas Biossensoriais , Febre de Chikungunya , Vírus Chikungunya , Culicidae , Vírus da Dengue , Dengue , Doenças Transmitidas por Vetores , Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/diagnóstico
6.
AMB Express ; 10(1): 147, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804287

RESUMO

To develop monovalent dengue virus-like particle for serotype 3 (DENV-LP/3), we prepared and expressed two structural polyprotein constructs using silkworm and Bm5 cells: DENV-3 Capsid-premembrane-envelope (DENV-3CprME) and premembrane-envelope (DENV-3prME). The expressed PA-tagged 3CprME and 3prME polypeptides were partially purified by PA-tag affinity chromatography and had molecular weights of 85 and 75 kDa, respectively. Expressed proteins were separately verified using the following primary antibodies: the anti-PA tag antibody, DENV premembrane polyclonal antibody, and DENV envelope polyclonal antibody. Transmission electron microscopy revealed that these DENV-3CprME and 3prME formed rough, spherical DENV-LPs (DENV-LP/3CprME and DENV-LP/3prME), respectively, with a diameter of 30-55 nm. The heparin-binding assay demonstrated that these DENV-LPs contained the envelope protein domain III on their surfaces. Both DENV-LPs showed an affinity to sera from human dengue patients and immunized mice. Immunization of mice with DENV-LP/3prME significantly induced the level of antibodies compared with DENV-LP/3CprME. These results indicate that DENV-LP/3prME is suitable as a vaccine candidate compared with DENV-LP/3CprME.

7.
Biochem Biophys Res Commun ; 522(1): 8-13, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31735333

RESUMO

Profilin (PROF) is a small actin-binding protein presented in apicomplexan protozoa. It was previously reported that Neospora caninum profilin (NcPROF) is secreted into the hemolymph of silkworm larvae regardless of the lack of an identified regular secretion signal peptide. To date, which domain is required for its secretion still remains unknown. To this end, we express a fluorescent protein (mCherry) fused with NcPROF at its N-terminus or C-terminus. Both fusion proteins were expressed and secreted into the culture supernatant from Bm5 cells or hemolymph from silkworm larvae, respectively. To further narrow down the C-terminal minimal domain required for its secretion, we constructed three truncated C-terminal domain constructions, ΔN (aa41-163), ΔN1 (aa50-163), and ΔN2 (aa144-163) respectively. All three fusion proteins were detected in the culture supernatant of Bm5 cells and silkworm hemolymph. Surprisingly, a 20-aa C-terminal α-helix domain facilitates the secretion of mCherry, allowing purification of ΔN2-mCherry from silkworm larval hemolymph by affinity chromatography. Taken together, the secretion domain from NcPROF was identified, indicating that can be utilized for the secretory expression of recombinant proteins in the future.


Assuntos
Neospora/química , Profilinas/química , Proteínas de Protozoários/química , Proteínas Recombinantes de Fusão/química , Animais , Baculoviridae , Bombyx , Cromatografia de Afinidade , Hemolinfa/química , Ligação Proteica , Domínios Proteicos , Sinais Direcionadores de Proteínas
8.
Mol Biotechnol ; 61(11): 852-859, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31473916

RESUMO

To explore virus-like particles formation of dengue virus serotype type 2 (DENV-2) structural proteins of, C, prM, E were expressed in silkworm larvae using recombinant Bombyx mori nucleopolyhedroviruses (BmNPV). Each recombinant BmNPV bacmid coding the 2C-prM-E polypeptide and E protein fused with the signal peptide of bombyxin from B. mori was injected into silkworm larvae. The expressed proteins were collected from hemolymph and fat body, and purified using affinity chromatography. E protein was observed at 55 kDa. The DENV virus-like particles (DENV-LPs) with a diameter approximately 35 nm was observed using transmission electron microscopy (TEM) and immunogold-labelling TEM analysis. The binding of each partially purified proteins to heparin, one of receptors for DENV was confirmed. DENV-LPs were secreted in silkworm larval hemolymph even still low amount, but the E protein and heparin binding function were confirmed.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Dengue/genética , Nucleopoliedrovírus/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/genética , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Vírus da Dengue/metabolismo , Corpo Adiposo/metabolismo , Expressão Gênica , Vetores Genéticos , Hemolinfa/metabolismo , Heparina/metabolismo , Larva/metabolismo , Nucleopoliedrovírus/metabolismo , Sinais Direcionadores de Proteínas/genética , Sorogrupo , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/isolamento & purificação , Proteínas Estruturais Virais/biossíntese , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/isolamento & purificação , Vírion/ultraestrutura
9.
Anal Chem ; 90(21): 12464-12474, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30264994

RESUMO

Dengue surveillance trusts only on reverse transcription-polymerase chain reaction (RT-PCR) type methodologies for confirmation of dengue virus serotypes; however, its real time application is restricted due to the expensive, complicated, and time-consuming process. In search of a new sensing system, here, we have reported a two-way-detection method for Dengue virus (DENV) serotype identification along with DNA quantification by using a new class of nanocomposite of gold nanoparticles (AuNP) and nitrogen, sulfur codoped graphene quantum dots (N,S-GQDs). The N,S-GQDs@AuNP has been used for serotype detection via a simple fluorescence technique using four dye-combined probe DNAs which is further validated by confocal microscopy. The quantification of the DNA has been measured by the differential pulse voltammetric (DPV) technique using methyelene blue as a redox indicator. Results obtained in this study, clearly demonstrate that the N,S-GQDs@AuNP can efficiently detect the four serotypes of DENV individually in the concentration range of 10-14 to 10-6 M with the LOD of 9.4 fM. In addition, to confirm its applicability in long chained complex DNA system, the sensor was also applied to the clinically isolated DENV DNA and showed satisfactory performances for serotype identification as well as quantification. We hope this simple and reliable method can pave an avenue for the development of sensitive and robust sensing probes in biomedical applications.


Assuntos
DNA Viral/análise , Vírus da Dengue/genética , Sorogrupo , Técnicas Biossensoriais , Sondas de DNA/química , DNA Viral/genética , Técnicas Eletroquímicas , Humanos , Nanocompostos/química , Tamanho da Partícula , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA