Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 108: 295-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22273516

RESUMO

In this study, the influence exogenous electron shuttles on the growth and glucose fermentative metabolism of Clostridium sp. BC1 was investigated. Bicarbonate addition to mineral salts (MS) medium accelerated growth and glucose fermentation which shifted acidogenesis (acetic- and butyric-acids) towards solventogenesis (ethanol and butanol). Addition of ferrihydrite, anthraquinone disulfonate, and nicotinamide adenine dinucleotide in bicarbonate to growing culture showed no significant influence on fermentative metabolism. In contrast, methyl viologen (MV) enhanced ethanol- and butanol-production by 28- and 12-fold, respectively with concomitant decrease in hydrogen, acetic- and butyric-acids compared to MS medium. The results show that MV addition affects hydrogenase activity with a significant reduction in hydrogen production and a shift in the direction of electron flow towards enhanced production of ethanol and butanol.


Assuntos
Butanóis/metabolismo , Clostridium/metabolismo , Etanol/metabolismo , Fermentação/fisiologia , Glucose/metabolismo , Anaerobiose , Clostridium/crescimento & desenvolvimento , Transporte de Elétrons/fisiologia , Fermentação/efeitos dos fármacos , Hidrogenase/metabolismo , Paraquat/farmacologia , Bicarbonato de Sódio/farmacologia
2.
Appl Radiat Isot ; 70(3): 423-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22142633

RESUMO

A number of research irradiations of (68)Zn was carried out at Brookhaven Linac Isotope Producer aiming to develop a practical approach to produce the radioisotope (67)Cu through the high energy (68)Zn(p,2p)(67)Cu reaction. Disks of enriched zinc were prepared by electrodeposition of (68)Zn on aluminum or titanium substrate and isolated in the aluminum capsule for irradition. Irradiations were carried out with 128, 105 and 92 MeV protons for at least 24h. After irradiation the disk was chemically processed to measure production yield and specific activity of (67)Cu and to reclaim the target material. The recovered (68)Zn was irradiated and processed again. The chemical procedure comprised BioRad cation exchange, Chelex-100 and anion exchange columns. Reduction of the oxidation degree of copper allowed for more efficient Cu/Co/Zn separation on the anion exchange column. No radionuclides other than copper isotopes were detected in the final product. The chemical yield of (67)Cu reached 92-95% under remote handling conditions in a hot box. Production yield of (67)Cu averaged 29.2 µCi/[µA-h×g (68)Zn] (1.08MBq/[µA-h×g (68)Zn]) in 24h irradiations. The best specific activity achieved was 18.6 mCi/µg (688.2 MBq/µg).

3.
Environ Sci Technol ; 45(6): 2278-85, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319733

RESUMO

Laboratory batch and column experiments were conducted to investigate the role of microbial exudates, e.g., exopolymeric substance (EPS) and alginic acid, on microbial Cr(VI) reduction by two different Pseudomonas strains (P. putida P18 and P. aeuroginosa P16) as a method for treating subsurface environment contaminated with Cr(VI). Our results indicate that microbial exudates significantly enhanced microbial Cr(VI) reduction rates by forming less toxic and highly soluble organo-Cr(III) complexes despite the fact Cr(III) has a very low solubility under the experimental conditions studied (e.g., pH 7). The formation of soluble organo-Cr(III) complexes led to the protection of the cells and chromate reductases from inactivation. In systems with no organic ligands, soluble organo-Cr(III) end products were formed between Cr(III) and the EPS directly released by bacteria due to cell lysis. Our results also provide evidence that cell lysis played an important role in microbial Cr(VI) reduction by Pseudomonas bacteria due to the release of constitutive reductases that intracellularly and/or extracellularly catalyzed the reduction of Cr(VI) to Cr(III). The overall results highlight the need for incorporation of the release and formation of organo-Cr(III) complexes into reactive transport models to more accurately design and monitor in situ microbial remediation techniques for the treatment of subsurface systems contaminated with Cr(VI).


Assuntos
Cromo/metabolismo , Exsudatos e Transudatos/metabolismo , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cromo/análise , Microbiologia do Solo , Poluentes do Solo/análise
4.
Chemosphere ; 82(10): 1489-95, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21272912

RESUMO

Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK(a) values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL(2) monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL(2) and HL(3) monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.


Assuntos
Cromo/metabolismo , Polissacarídeos Bacterianos/metabolismo , Poluentes do Solo/metabolismo , Adsorção , Cromo/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Modelos Químicos , Polissacarídeos Bacterianos/química , Solo/química , Poluentes do Solo/química , Espectroscopia por Absorção de Raios X
5.
Inorg Chem ; 48(19): 9485-90, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19780622

RESUMO

Phthalic acid, a ubiquitous organic ligand, formed soluble mono- and biligand complexes with a uranyl ion that was then reduced to a U(IV)-phthalate by a Clostridium species under anaerobic conditions. We confirmed the reduction of the hexavalent uranium to the tetravalent oxidation state by UV-vis absorption and X-ray absorption near edge structure spectroscopy. Sequential micro- and ultrafiltration of the solution revealed that the bioreduced uranium was present as a colloid with particles between 0.03 and 0.45 microm. Analysis with extended X-ray absorption fine structure revealed the association of the reduced uranium with the phthalic acid as a repeating biligand 1:2 U(IV):phthalic acid polymer. This is the first report of the formation of a U(IV) complexed to two phthalic acid molecules in the form of a polymeric colloid. Although it was proposed that the bioreduction and the precipitation of uranium might be an invaluable strategy to immobilize uranium in contaminated environments, our results suggest that the organic ligands present there might hinder the precipitation of the bioreduced uranium under anaerobic conditions and, thereby, enhance its environmental mobility as uranium organic complexes or colloids.


Assuntos
Coloides/química , Ácidos Ftálicos/química , Polímeros/química , Poluentes Radioativos do Solo , Urânio/química , Poluentes Radioativos da Água , Biodegradação Ambiental , Oxirredução , Solubilidade , Fatores de Tempo
6.
Environ Sci Technol ; 43(12): 4280-6, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19603635

RESUMO

Macroscopic and spectroscopic investigations (XAFS, XRF, and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Secondary precipitates of U(VI) silicate precipitates (boltwoodite and uranophane) were present dominantly in shallow-depth sediments (15-16 m bgs), while adsorbed U(VI) phases and polynuclear U(VI) surface precipitates were considered to dominate in intermediate-depth sediments (20-25 m bgs). Only natural uranium was observed in the deeper sediments (> 28 m bgs) with no signs of contact with tank wastes containing Hanford-derived U(VI). Across all depths, most of the U(VI) was preferentially associated with the silt and clay size fractions of sediments. Strong correlation between U(VI) and Ca was found in the shallow-depth sediments, especially for the precipitated U(VI) silicates. Because U(VI) silicate precipitates dominate in the shallow-depth sediments, the released U(VI) concentration by macroscopic (bi)carbonate leaching resulted from both desorption and dissolution processes. Having different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments using several different methods would be needed to estimate U(VI) fate and transport correctly in the vadose zone.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Urânio/química , Resíduos Radioativos , Washington , Poluentes Radioativos da Água/química , Contaminação Radioativa da Água/prevenção & controle
7.
Inorg Chem ; 47(22): 10739-43, 2008 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-18847255

RESUMO

Phthalic acid, a ubiquitous organic compound found in soil, water, and in domestic and nuclear wastes can affect the mobility and bioavailability of metals and radionuclides. We examined the complexation of uranium with phthalic acid by potentiometric titration, electrospray ionization-mass spectroscopy (ESI-MS), and extended X-ray absorption fine structure (EXAFS) analysis. Potentiometric titration of a 1:1 U/phthalic acid indicated uranyl ion bonding with both carboxylate groups of phthalic acid; above pH 5 the uranyl ion underwent hydrolysis with one hydroxyl group coordinated to the inner-sphere of uranium. In the presence of excess phthalic acid, ESI-MS analysis revealed the formation of both 1:1 and 1:2 U/phthalic acid complexes. EXAFS studies confirmed the mononuclear biligand 1:2 U/phthalic acid complex as the predominant form. These results show that phthalates can form soluble stable complexes with uranium and may affect its mobility.


Assuntos
Ácidos Ftálicos/química , Urânio/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Potenciometria/métodos , Solubilidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria por Raios X/métodos
8.
Environ Sci Technol ; 42(7): 2355-60, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18504965

RESUMO

An anaerobic, gram positive, spore-forming bacterium Clostridium sp., common in soils and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), Tc(VII) to Tc(IV), and U(VI) to U(IV), reduced Pu(IV) to Pu(III). Addition of 242Pu (IV)-nitrate to the bacterial growth medium at pH 6.4 resulted in the precipitation of Pu as amorphous Pu(OH)4 due to hydrolysis and polymerization reactions. The Pu (1 x 10(-5) M) had no effect upon growth of the bacterium as evidenced by glucose consumption; carbon dioxide and hydrogen production; a decrease in pH of the medium from 6.4 to 3.0 due to production of acetic and butyric acids from glucose fermentation; and a change in the Eh of the culture medium from +50 to -180 mV. Commensurate with bacterial growth, Pu was rapidly solubilized as evidenced by an increase in Pu concentration in solution which passed through a 0.03 microm filtration. Selective solvent extraction of the culture by thenoyltrifluoroacetone (TTA) indicated the presence of a reduced Pu species in the soluble fraction. X-ray absorption near edge spectroscopic (XANES) analysis of Pu in the culture sample at the Pu LIII absorption edge (18.054 keV) showed a shift of -3 eV compared to a Pu(IV) standard indicating reduction of Pu(IV) to Pu(III). These results suggestthat, although Pu generally exists as insoluble Pu(IV) in the environment, under appropriate conditions, anaerobic microbial activity could affect the long-term stability and mobility of Pu by its reductive dissolution.


Assuntos
Anaerobiose , Clostridium/metabolismo , Plutônio/metabolismo , Biotransformação , Oxirredução , Solubilidade , Análise Espectral/métodos
9.
Chemosphere ; 70(2): 263-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17673274

RESUMO

Inorganic polyphosphates (PolyP) are simple linear phosphate (PO(4)(3-)) polymers which are produced by a variety of microorganisms. One of their functions is to complex metals resulting in their precipitation. We investigated the interaction of phosphate and low-molecular-weight PolyP (1400-1900Da) with uranyl ion at various pHs. Potentiometric titration of uranyl ion in the presence of phosphate showed two sharp inflection points at pHs 4 and 8 due to uranium hydrolysis reaction and interaction with phosphate. Titration of uranyl ion and PolyP revealed a broad inflection point starting at pH 4 indicating that complexation of U-PolyP occurs over a wide range of pHs with no uranium hydrolysis. EXAFS analysis of the U-HPO(4) complex revealed that an insoluble uranyl phosphate species was formed below pH 6; at higher pH (> or = 8) uranium formed a precipitate consisting of hydroxophosphato species. In contrast, adding uranyl ion to PolyP resulted in formation of U-PolyP complex over the entire pH range studied. At low pH (< or = 6) an insoluble U-PolyP complex having a monodentate coordination of phosphate with uranium was observed. Above pH 6 however, a soluble bidentate complex with phosphate and uranium was predominant. These results show that the complexation and solubility of uranium with PO(4) and PolyP are dependent upon pH.


Assuntos
Polifosfatos/química , Nitrato de Uranil/química , Precipitação Química , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Potenciometria , Solubilidade
10.
Dalton Trans ; (40): 4829-37, 2006 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17033708

RESUMO

The stability constants and the associated thermodynamic parameters of formation of the binary and the ternary complexes of Am(3+), Cm(3+) and Eu(3+) were determined by a solvent extraction to measure the variation in the distribution coefficient with temperature (0-60 degrees C) for aqueous solutions of I = 6.60 m (NaClO(4)). The formation of ternary complexes is favored by both the enthalpy (exothermic) and the entropy (endothermic) values. (13) C NMR, TRLFS and EXAFS spectral data was used to study the coordination modes of the ternary complexes. In the formation of the complex M(EDTA)(Ox)(3-), the EDTA retained all its coordination sites with Ox binding via two carboxylates and with one water of hydration remaining attached to the M(3+). In the complex M(EDTA)(Ox)(2)(5-), one carboxylate, either from EDTA or Ox, is not bounded to M(3+) and there were no water of hydration attached to these cations.

11.
Environ Sci Technol ; 36(9): 2094-100, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12026999

RESUMO

The mechanisms of photodegradation of binary iron- and uranium-citrate and ternary iron-uranium-citrate complexes were elucidated. Citric acid degradation products were identified by HPLC and GC, and the metal precipitates were identified by XRD and EXAFS. Photodegradation of a binuclear iron-citrate complex occurred as a result of two one-electron oxidations of citric acid with the formation of 3-oxoglutarate and two ferrous ions. The ferrous ions were reoxidized by a photo-Fenton reaction, resulting in the precipitation of iron as two-line ferrihydrite Fe(OH)3. The citric acid in the uranium-citrate complex underwent a two-electron oxidation to acetoacetate with the concomitant reduction of U(VI) to U(IV). The U(IV) was subsequently photooxidized in the presence of dioxygen with precipitation of uranium as the mineral schoepite (UO3 x 2H2O). A two-step electron reduction of two ferric ions to two ferrous ions wasthe primary mechanism for photodegradation of the ternary iron-uranium-citrate complex with oxidation of citric acid to 3-oxoglutarate; reduction of uranium was not observed. The iron precipitated as ferrihydrite and the uranyl ion as a uranyl hydroxide species. These results show the potential application of photochemical treatment of wastewater and decontamination solutions containing binary and ternary iron- and uranium-citrate complexes.


Assuntos
Ácido Cítrico/química , Compostos Férricos/química , Urânio/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Oxirredução , Fotoquímica , Eliminação de Resíduos Líquidos , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA