Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Nat Immunol ; 25(10): 1871-1883, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39289557

RESUMO

PD-1 is a key negative regulator of CD8+ T cell activation and is highly expressed by exhausted T cells in cancer and chronic viral infection. Although PD-1 blockade can improve viral and tumor control, physiological PD-1 expression prevents immunopathology and improves memory formation. The mechanisms driving high PD-1 expression in exhaustion are not well understood and could be critical to disentangling its beneficial and detrimental effects. Here, we functionally interrogated the epigenetic regulation of PD-1 using a mouse model with deletion of an exhaustion-specific PD-1 enhancer. Enhancer deletion exclusively alters PD-1 expression in CD8+ T cells in chronic infection, creating a 'sweet spot' of intermediate expression where T cell function is optimized compared to wild-type and Pdcd1-knockout cells. This permits improved control of chronic infection without additional immunopathology. Together, these results demonstrate that tuning PD-1 via epigenetic editing can reduce CD8+ T cell dysfunction while avoiding excess immunopathology.


Assuntos
Linfócitos T CD8-Positivos , Epigênese Genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1 , Animais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Linfócitos T CD8-Positivos/imunologia , Camundongos , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Elementos Facilitadores Genéticos/genética
2.
bioRxiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39211113

RESUMO

Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.

3.
Cancer Cell ; 42(8): 1352-1369.e13, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39029464

RESUMO

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
4.
Nat Commun ; 15(1): 6145, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034325

RESUMO

Parasitic diseases, particularly malaria (caused by Plasmodium falciparum) and theileriosis (caused by Theileria spp.), profoundly impact global health and the socioeconomic well-being of lower-income countries. Despite recent advances, identifying host metabolic proteins essential for these auxotrophic pathogens remains challenging. Here, we generate a novel metabolic model of human hepatocytes infected with P. falciparum and integrate it with a genome-wide CRISPR knockout screen targeting Theileria-infected cells to pinpoint shared vulnerabilities. We identify key host metabolic enzymes critical for the intracellular survival of both of these lethal hemoparasites. Remarkably, among the metabolic proteins identified by our synergistic approach, we find that host purine and heme biosynthetic enzymes are essential for the intracellular survival of P. falciparum and Theileria, while other host enzymes are only essential under certain metabolic conditions, highlighting P. falciparum's adaptability and ability to scavenge nutrients selectively. Unexpectedly, host porphyrins emerge as being essential for both parasites. The shared vulnerabilities open new avenues for developing more effective therapies against these debilitating diseases, with the potential for broader applicability in combating apicomplexan infections.


Assuntos
Sistemas CRISPR-Cas , Hepatócitos , Malária Falciparum , Plasmodium falciparum , Theileria , Plasmodium falciparum/genética , Humanos , Hepatócitos/parasitologia , Hepatócitos/metabolismo , Malária Falciparum/parasitologia , Theileria/genética , Genômica/métodos , Heme/metabolismo , Interações Hospedeiro-Parasita/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Animais , Técnicas de Inativação de Genes
6.
Nat Commun ; 15(1): 4892, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849329

RESUMO

Reducing disparities is vital for equitable access to precision treatments in cancer. Socioenvironmental factors are a major driver of disparities, but differences in genetic variation likely also contribute. The impact of genetic ancestry on prioritization of cancer targets in drug discovery pipelines has not been systematically explored due to the absence of pre-clinical data at the appropriate scale. Here, we analyze data from 611 genome-scale CRISPR/Cas9 viability experiments in human cell line models to identify ancestry-associated genetic dependencies essential for cell survival. Surprisingly, we find that most putative associations between ancestry and dependency arise from artifacts related to germline variants. Our analysis suggests that for 1.2-2.5% of guides, germline variants in sgRNA targeting sequences reduce cutting by the CRISPR/Cas9 nuclease, disproportionately affecting cell models derived from individuals of recent African descent. We propose three approaches to mitigate this experimental bias, enabling the scientific community to address these disparities.


Assuntos
Sistemas CRISPR-Cas , Mutação em Linhagem Germinativa , Humanos , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Células Germinativas/metabolismo , Variação Genética , Neoplasias/genética , Reações Falso-Negativas , Genoma Humano , Linhagem Celular Tumoral , Linhagem Celular
7.
Nature ; 630(8015): 198-205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720074

RESUMO

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase , Leucemia , Transdução de Sinais , Quinases Ativadas por p21 , Animais , Humanos , Camundongos , Linhagem Celular , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Citarabina/farmacologia , Citarabina/uso terapêutico , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Leucemia/genética , Leucemia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Commun ; 15(1): 3577, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678031

RESUMO

Genetic interactions mediate the emergence of phenotype from genotype, but technologies for combinatorial genetic perturbation in mammalian cells are challenging to scale. Here, we identify background-independent paralog synthetic lethals from previous CRISPR genetic interaction screens, and find that the Cas12a platform provides superior sensitivity and assay replicability. We develop the in4mer Cas12a platform that uses arrays of four independent guide RNAs targeting the same or different genes. We construct a genome-scale library, Inzolia, that is ~30% smaller than a typical CRISPR/Cas9 library while also targeting ~4000 paralog pairs. Screens in cancer cells demonstrate discrimination of core and context-dependent essential genes similar to that of CRISPR/Cas9 libraries, as well as detection of synthetic lethal and masking/buffering genetic interactions between paralogs of various family sizes. Importantly, the in4mer platform offers a fivefold reduction in library size compared to other genetic interaction methods, substantially reducing the cost and effort required for these assays.


Assuntos
Proteínas de Bactérias , Sistemas CRISPR-Cas , Endodesoxirribonucleases , Técnicas de Inativação de Genes , Humanos , Técnicas de Inativação de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Linhagem Celular Tumoral , Genes Essenciais , Células HEK293 , Epistasia Genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo
9.
Nat Methods ; 21(6): 1114-1121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594452

RESUMO

The identification of genetic and chemical perturbations with similar impacts on cell morphology can elucidate compounds' mechanisms of action or novel regulators of genetic pathways. Research on methods for identifying such similarities has lagged due to a lack of carefully designed and well-annotated image sets of cells treated with chemical and genetic perturbations. Here we create such a Resource dataset, CPJUMP1, in which each perturbed gene's product is a known target of at least two chemical compounds in the dataset. We systematically explore the directionality of correlations among perturbations that target the same protein encoded by a given gene, and we find that identifying matches between chemical and genetic perturbations is a challenging task. Our dataset and baseline analyses provide a benchmark for evaluating methods that measure perturbation similarities and impact, and more generally, learn effective representations of cellular state from microscopy images. Such advancements would accelerate the applications of image-based profiling of cellular states, such as uncovering drug mode of action or probing functional genomics.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos
10.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670073

RESUMO

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Assuntos
Sistemas CRISPR-Cas , Hexosiltransferases , Lipopolissacarídeos , Proteínas de Membrana , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , NF-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Receptor 4 Toll-Like/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células HEK293 , Inflamação/metabolismo , Inflamação/genética , Glicosilação , Microscopia Crioeletrônica , Domínio Catalítico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
11.
Nat Methods ; 21(6): 1033-1043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684783

RESUMO

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.


Assuntos
Processamento de Proteína Pós-Traducional , Fosforilação , Humanos , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Transdução de Sinais , Células HEK293 , Proteômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Linfócitos T/metabolismo , Células Jurkat , NF-kappa B/metabolismo
12.
J Biol Chem ; 300(4): 107153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462163

RESUMO

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Proteínas de Membrana , NF-kappa B , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Animais , Humanos , Sistemas CRISPR-Cas , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia
13.
Cell Genom ; 4(3): 100519, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484704

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Vetores Genéticos/genética
14.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328215

RESUMO

Small cell lung cancers (SCLC) are comprised of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLC, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes, including non-canonical BAF (ncBAF) complexes, as top dependencies specific to POU2F3-positive SCLC. Notably, clinical-grade pharmacologic mSWI/SNF inhibition attenuates proliferation of all POU2F3-positive SCLCs, while disruption of ncBAF via BRD9 degradation is uniquely effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, chemical targeting of SMARCA4/2 mSWI/SNF ATPases and BRD9 decrease POU2F3-SCLC tumor growth and increase survival in vivo . Taken together, these results characterize mSWI/SNF-mediated global governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for SCLC.

15.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411617

RESUMO

In vivo T cell screens are a powerful tool for elucidating complex mechanisms of immunity, yet there is a lack of consensus on the screen design parameters required for robust in vivo screens: gene library size, cell transfer quantity, and number of mice. Here, we describe the Framework for In vivo T cell Screens (FITS) to provide experimental and analytical guidelines to determine optimal parameters for diverse in vivo contexts. As a proof-of-concept, we used FITS to optimize the parameters for a CD8+ T cell screen in the B16-OVA tumor model. We also included unique molecular identifiers (UMIs) in our screens to (1) improve statistical power and (2) track T cell clonal dynamics for distinct gene knockouts (KOs) across multiple tissues. These findings provide an experimental and analytical framework for performing in vivo screens in immune cells and illustrate a case study for in vivo T cell screens with UMIs.


Assuntos
Linfócitos T CD8-Positivos , Animais , Camundongos , Técnicas de Inativação de Genes
16.
Nat Immunol ; 25(1): 178-188, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012416

RESUMO

Annotation of immunologic gene function in vivo typically requires the generation of knockout mice, which is time consuming and low throughput. We previously developed CHimeric IMmune Editing (CHIME), a CRISPR-Cas9 bone marrow delivery system for constitutive, ubiquitous deletion of single genes. Here we describe X-CHIME, four new CHIME-based systems for modular and rapid interrogation of gene function combinatorially (C-CHIME), inducibly (I-CHIME), lineage-specifically (L-CHIME) or sequentially (S-CHIME). We use C-CHIME and S-CHIME to assess the consequences of combined deletion of Ptpn1 and Ptpn2, an embryonic lethal gene pair, in adult mice. We find that constitutive deletion of both PTPN1 and PTPN2 leads to bone marrow hypoplasia and lethality, while inducible deletion after immune development leads to enteritis and lethality. These findings demonstrate that X-CHIME can be used for rapid mechanistic evaluation of genes in distinct in vivo contexts and that PTPN1 and PTPN2 have some functional redundancy important for viability in adult mice.


Assuntos
Sistemas CRISPR-Cas , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Camundongos , Animais , Sistemas CRISPR-Cas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Camundongos Knockout , Sistema Imunitário , Edição de Genes
17.
Blood ; 143(8): 697-712, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048593

RESUMO

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodomínio/genética , Cromatina/genética , Fatores de Transcrição/genética , Proteína Meis1/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogênese
18.
Proc Natl Acad Sci U S A ; 121(1): e2315865120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147552

RESUMO

To define cellular immunity to the intracellular pathogen Toxoplasma gondii, we performed a genome-wide CRISPR loss-of-function screen to identify genes important for (interferon gamma) IFN-γ-dependent growth restriction. We revealed a role for the tumor suppressor NF2/Merlin for maximum induction of Interferon Stimulated Genes (ISG), which are positively regulated by the transcription factor IRF-1. We then performed an ISG-targeted CRISPR screen that identified the host E3 ubiquitin ligase RNF213 as necessary for IFN-γ-mediated control of T. gondii in multiple human cell types. RNF213 was also important for control of bacterial (Mycobacterium tuberculosis) and viral (Vesicular Stomatitis Virus) pathogens in human cells. RNF213-mediated ubiquitination of the parasitophorous vacuole membrane (PVM) led to growth restriction of T. gondii in response to IFN-γ. Moreover, overexpression of RNF213 in naive cells also impaired growth of T. gondii. Surprisingly, growth inhibition did not require the autophagy protein ATG5, indicating that RNF213 initiates restriction independent of a previously described noncanonical autophagy pathway. Mutational analysis revealed that the ATPase domain of RNF213 was required for its recruitment to the PVM, while loss of a critical histidine in the RZ finger domain resulted in partial reduction of recruitment to the PVM and complete loss of ubiquitination. Both RNF213 mutants lost the ability to restrict growth of T. gondii, indicating that both recruitment and ubiquitination are required. Collectively, our findings establish RNF213 as a critical component of cell-autonomous immunity that is both necessary and sufficient for control of intracellular pathogens in human cells.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Interferon gama/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Toxoplasma/metabolismo , Fatores de Transcrição , Adenosina Trifosfatases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Nat Commun ; 14(1): 8048, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052854

RESUMO

CAR-T therapy is a promising, novel treatment modality for B-cell malignancies and yet many patients relapse through a variety of means, including loss of CAR-T cells and antigen escape. To investigate leukemia-intrinsic CAR-T resistance mechanisms, we performed genome-wide CRISPR-Cas9 loss-of-function screens in an immunocompetent murine model of B-cell acute lymphoblastic leukemia (B-ALL) utilizing a modular guide RNA library. We identified IFNγR/JAK/STAT signaling and components of antigen processing and presentation pathway as key mediators of resistance to CAR-T therapy in vivo; intriguingly, loss of this pathway yielded the opposite effect in vitro (sensitized leukemia to CAR-T cells). Transcriptional characterization of this model demonstrated upregulation of these pathways in tumors relapsed after CAR-T treatment, and functional studies showed a surprising role for natural killer (NK) cells in engaging this resistance program. Finally, examination of data from B-ALL patients treated with CAR-T revealed an association between poor outcomes and increased expression of JAK/STAT and MHC-I in leukemia cells. Overall, our data identify an unexpected mechanism of resistance to CAR-T therapy in which tumor cell interaction with the in vivo tumor microenvironment, including NK cells, induces expression of an adaptive, therapy-induced, T-cell resistance program in tumor cells.


Assuntos
Linfoma de Burkitt , Leucemia , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , RNA Guia de Sistemas CRISPR-Cas , Imunoterapia Adotiva , Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Microambiente Tumoral
20.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961518

RESUMO

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly-described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA