Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203196

RESUMO

Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10-16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.


Assuntos
Colo/imunologia , Colo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Nutrients ; 11(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652854

RESUMO

Triple negative breast cancers (TNBC) are the most aggressive and lethal breast cancers (BC). The aryl hydrocarbon receptor (AHR) is often overexpressed in TNBC, and its activation results in the epigenetic silencing of BRCA1, which is a necessary factor for the transcriptional activation of estrogen receptor (ER)α. The dietary isoflavone genistein (GEN) modulates BRCA1 CpG methylation in BC cells. The purpose of this study was to investigate the effect of GEN on BRCA1 epigenetic regulation and AHR activity in vivo and TNBC cells. Mice were administered a control or GEN-enriched (4 and 10 ppm) diet from gestation through post-natal day 50. Mammary tissue was analyzed for changes in BRCA1 regulation and AhR activity. TNBC cells with constitutively hypermethylated BRCA1 (HCC38) and MCF7 cells were used. Protein levels and mRNA expression were measured by Western blot and real-time PCR, respectively. BRCA1 promoter occupancy and CpG methylation were analyzed by chromatin immunoprecipitation and methylation-specific PCR, respectively. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. GEN administered in the diet dose-dependently decreased basal Brca1 methylation and AHR activity in the mammary gland of adult mice. HCC38 cells were found to overexpress constitutively active AHR in parallel with BRCA1 hypermethylation. The treatment of HCC38 cells with GEN upregulated BRCA1 protein levels, which was attributable to decreased CpG methylation and AHR binding at BRCA1 exon 1a. In MCF7 cells, GEN prevented the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-dependent localization of AHR at the BRCA1 gene. These effects were consistent with those elicited by control AHR antagonists galangin (GAL), CH-223191, and α-naphthoflavone. The pre-treatment with GEN sensitized HCC38 cells to the antiproliferative effects of 4-hydroxytamoxifen. We conclude that the dietary compound GEN may be effective for the prevention and reversal of AHR-dependent BRCA1 hypermethylation, and the restoration of ERα-mediated response, thus imparting the sensitivity of TNBC to antiestrogen therapy.


Assuntos
Proteína BRCA1/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Ração Animal , Animais , Proteína BRCA1/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Genisteína/administração & dosagem , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias de Mama Triplo Negativas
3.
Am J Physiol Renal Physiol ; 295(1): F128-36, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18434384

RESUMO

We previously demonstrated that several clinically utilized volatile anesthetics including sevoflurane protected against renal ischemia-reperfusion (IR) injury by reducing necrosis and inflammation in vivo. We also demonstrated that volatile anesthetics produced direct anti-necrotic and anti-inflammatory effects in cultured renal tubules via mechanisms involving the externalization of phosphatidylserine and subsequent release of transforming growth factor (TGF)-beta1. In this study, we tested the hypothesis that volatile anesthetic-mediated renal protection requires TGF-beta1 and SMAD3 signaling in vivo. We subjected TGF-beta1+/+, TGF-beta1+/-, SMAD3+/+, or SMAD3-/- mice to renal IR under anesthesia with pentobarbital sodium or with sevoflurane. Although TGF-beta1+/+ and SMAD3+/+ mice were significantly protected against renal IR injury under sevoflurane anesthesia with reduced necrosis and inflammation, TGF-beta1+/- mice and SMAD3-/- mice were not protected against renal IR with sevoflurane. Furthermore, a neutralizing TGF-beta1 antibody blocked renal protection with sevoflurane in TGF-beta1+/+ mice. Sevoflurane caused nuclear translocation of SMAD3 and reduced the TNF-alpha-induced nuclear translocation of NF-kappaB in primary cultures of proximal tubules from TGF-beta1+/+ but not in TGF-beta1+/- mice. Finally, sevoflurane protected against necrosis induced with hydrogen peroxide in primary cultures of proximal tubules from TGF-beta1+/+ mice or SMAD3+/+ mice but not in proximal tubules from TGF-beta1+/- or SMAD3-/- mice. Therefore, we demonstrate in this study that sevoflurane-mediated renal protection in vivo requires the TGF-beta1-->SMAD3 signaling pathway.


Assuntos
Nefropatias/prevenção & controle , Éteres Metílicos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Fator de Crescimento Transformador beta1/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Células Cultivadas , Medula Renal/efeitos dos fármacos , Medula Renal/patologia , Camundongos , NF-kappa B/biossíntese , RNA Mensageiro/metabolismo , Sevoflurano , Proteína Smad3/deficiência , Fator de Crescimento Transformador beta1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA