Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(9): 161, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834025

RESUMO

A violacein-producing bacterium was isolated from a mud sample collected near a hot spring on Kümbet Plateau in Giresun Province and named the GK strain. According to the phylogenetic tree constructed using 16S rRNA gene sequence analysis, the GK strain was identified and named Janthinobacterium sp. GK. The crude violacein pigments were separated into three different bands on a TLC sheet. Then violacein and deoxyviolacein were purified by vacuum liquid column chromatography and identified by NMR spectroscopy. According to the inhibition studies, the HIV-1 RT inhibition rate of 1 mM violacein from the GK strain was 94.28% and the CoV-2 spike RBD:ACE2 inhibition rate of 2 mM violacein was 53%. In silico studies were conducted to investigate the possible interactions between violacein and deoxyviolacein and three reference molecules with the target proteins: angiotensin-converting enzyme 2 (ACE2), HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain. Ligand violacein binds strongly to the receptor ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of -9.94 kcal/mol, -9.32 kcal/mol, and -8.27 kcal/mol, respectively. Deoxyviolacein strongly binds to the ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of -10.38 kcal/mol, -9.50 kcal/mol, and -8.06 kcal/mol, respectively. According to these data, violacein and deoxyviolacein bind to all the receptors quite effectively. SARS-CoV-2 spike protein and HIV-1-RT inhibition studies with violacein and deoxyviolacein were performed for the first time in the literature.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , HIV-1 , Indóis , Glicoproteína da Espícula de Coronavírus , COVID-19/metabolismo , COVID-19/virologia , HIV-1/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Filogenia , Ligação Proteica , RNA Ribossômico 16S , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA