Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Adv Healthc Mater ; : e2400475, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815251

RESUMO

Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37632203

RESUMO

Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Reprodutibilidade dos Testes , Imunoterapia , Neoplasias/radioterapia , Nanotecnologia , Nanoestruturas/uso terapêutico , Microambiente Tumoral
3.
Mater Today Bio ; 23: 100868, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075253

RESUMO

Molding processes with molds containing topographical structures have been used for fabrication of hydrogel and cryogel particles. However, they can involve difficulties in separation of fabricated particles with complex shape from the molds or repeated fabrication of the particles although the overall processes do not require much skill and equipment. In this study, molds with etched superhydrophobic patterns have been developed by etching polytetrafluoroethylene (PTFE) blocks in user-defined designs with a femtosecond (FS) laser-based etching system. Lyophilized cryogel particles with various designs and sizes were fabricated by molding precursors with these PTFE molds. Additionally, the clean and easy separation of particles from the molds allowed repeated fabrication of the particles. For an application, relatively 'big' gelatin-norbornene (GelNB) cryogel particles prepared via molding with polydimethylsiloxane (PDMS) molds, swelling in phosphate buffered saline (PBS) and slicing height in half and 'small' GelNB cryogel particles fabricated with the PTFE molds were fabricated. Then, they were used to study scaffold size effect on calvarial bone regeneration. The molds generated with the FS laser-based etching system can be useful for various applications that require the mass production of cryogel particles in various geometries.

4.
Acta Pharm Sin B ; 13(12): 4983-4998, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045059

RESUMO

Lipid-coated microbubbles are widely used as an ultrasound contrast agent, as well as drug delivery carriers. However, the two main limitations in ultrasound diagnosis and drug delivery using microbubbles are the short half-life in the blood system, and the difficulty of surface modification of microbubbles for active targeting. The exosome, a type of extracellular vesicle, has a preferentially targeting ability for its original cell. In this study, exosome-fused microbubbles (Exo-MBs) were developed by embedding the exosome membrane proteins into microbubbles. As a result, the stability of Exo-MBs is improved over the conventional microbubbles. On the same principle that under the exposure of ultrasound, microbubbles are cavitated and self-assembled into nano-sized particles, and Exo-MBs are self-assembled into exosome membrane proteins-embedded nanoparticles (Exo-NPs). The Exo-NPs showed favorable targeting properties to their original cells. A photosensitizer, chlorin e6, was loaded into Exo-MBs to evaluate therapeutic efficacy as a drug carrier. Much higher therapeutic efficacy of photodynamic therapy was confirmed, followed by cancer immunotherapy from immunogenic cell death. We have therefore developed a novel ultrasound image-guided drug delivery platform that overcomes the shortcomings of the conventional ultrasound contrast agent and is capable of simultaneous photodynamic therapy and cancer immunotherapy.

5.
Exp Mol Med ; 55(9): 1955-1973, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653032

RESUMO

Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Humanos , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Diabetes Mellitus/metabolismo , Doenças Metabólicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos
6.
Mater Horiz ; 10(10): 4532-4540, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37559559

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.


Assuntos
Citotoxicidade Imunológica , Neoplasias , Humanos , Forma Celular , Células Matadoras Naturais , Imunoterapia/métodos
7.
Small ; 19(47): e2301377, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491793

RESUMO

Cancer immunotherapy is a promising therapy to treat cancer patients with minimal toxicity, but only a small fraction of patients responded to it as a monotherapy. In this study, a strategy to boost therapeutic efficacy by combining an immunotherapy based on ex vivo expanded tumor-reactive T cells is devised, or adoptive cell therapy (ACT), with photothermal therapy (PTT). Smart gold nanoparticles (sAuNPs), which aggregates to form gold nanoclusters in the cells, are loaded into T cells, and their photothermal effects within T cells are confirmed. When transferred into tumor-bearing mice, large number of sAuNP-carrying T cells successfully infiltrate into tumor tissues and exert anti-tumor activity to suspend tumor growth, but over time tumor cells evade and regrow. Of note, ≈20% of injected doses of sAuNPs are deposited in tumor tissues, suggesting T cells are an efficient nanoparticle tumor delivery vehicle. When T cells no longer control tumor growth, PTT is performed to further eliminate tumors. In this manner, ACT and PTT are temporally coupled, and the combined immuno-photothermal treatment demonstrated significantly greater therapeutic efficacy than the monotherapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Ouro/uso terapêutico , Linfócitos T , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Terapia Combinada , Fototerapia , Linhagem Celular Tumoral
8.
Small ; 19(43): e2302809, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37365959

RESUMO

Accurately analyzing the functional activities of natural killer (NK) cells in clinical diagnosis remains challenging due to their coupling with other immune effectors. To address this, an integrated immune cell separator is required, which necessitates a streamlined sample preparation workflow including immunological cell isolation, removal of excess red blood cells (RBCs), and buffer exchange for downstream analysis. Here, a self-powered integrated magneto-microfluidic cell separation (SMS) chip is presented, which outputs high-purity target immune cells by simply inputting whole blood. The SMS chip intensifies the magnetic field gradient using an iron sphere-filled inlet reservoir for high-performance immuno-magnetic cell selection and separates target cells size-selectively using a microfluidic lattice for RBC removal and buffer exchange. In addition, the chip incorporates self-powered microfluidic pumping through a degassed polydimethylsiloxane chip, enabling the rapid isolation of NK cells at the place of blood collection within 40 min. This chip is used to isolate NK cells from whole blood samples of hepatocellular cancer patients and healthy volunteers and examined their functional activities to identify potential abnormalities in NK cell function. The SMS chip is simple to use, rapid to sort, and requires small blood volumes, thus facilitating the use of immune cell subtypes for cell-based diagnosis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Separação Celular , Eritrócitos
9.
Mater Horiz ; 10(6): 2215-2225, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000519

RESUMO

In this work, we describe the development of an implantable ionic device that can deliver a spatially targeted light source to tumor tissues in a controllable manner. The motivation behind our approach is to overcome certain limitations of conventional approaches where light is delivered from the outside of the body and only achieves low penetration depths. Also, to avoid the issues that come from the periodic need to replace the device's battery, we utilize a wireless power transfer system synchronized with light operation in an implantable structure. In our testing of this implanted, soft ionic, gel-based device that receives power wirelessly, we were able to clearly observe its capability to effectively deliver light in a harmonious and stable configuration to adjacent tissues. This approach reduces the mechanical inconsistencies seen in conventional systems that are induced by mismatches between the mechanical strength of conventional metallic components and that of biological tissues. The light delivering performance of our device was studied in depth under the various conditions set by adjusting the area of the gel receivers, the ion concentration and the ion types used in the gel components. The enhanced antitumor effects of our device were observed through in vitro cell tests, in comparison with treatments using the conventional approach of using direct light from outside the body. Full encapsulation using biocompatible elastomers enables our device to provide good functional stability, while implantation for about 3 weeks in the in vivo model showed the effective targeted photodynamic treatments made possible by our approach. Our advanced approach of designing the implantable platform based on ionic gel components allows us to iteratively irradiate a target with light whenever required, making the technology particularly suited to long-term treatment of residual tumors while facilitating further practical and clinical development.


Assuntos
Fotoquimioterapia , Tecnologia sem Fio , Próteses e Implantes , Fontes de Energia Elétrica , Tecnologia
10.
Nat Immunol ; 24(3): 463-473, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624164

RESUMO

The formation of an immunological synapse (IS) is essential for natural killer (NK) cells to eliminate target cells. Despite an advanced understanding of the characteristics of the IS and its formation processes, the mechanisms that regulate its stability via the cytoskeleton are unclear. Here, we show that Nogo receptor 1 (NgR1) has an important function in modulating NK cell-mediated killing by destabilization of IS formation. NgR1 deficiency or blockade resulted in improved tumor control of NK cells by enhancing NK-to-target cell contact stability and regulating F-actin dynamics during IS formation. Patients with tumors expressing abundant NgR1 ligand had poor prognosis despite high levels of NK cell infiltration. Thus, our study identifies NgR1 as an immune checkpoint in IS formation and indicates a potential approach to improve the cytolytic function of NK cells in cancer immunotherapy.


Assuntos
Sinapses Imunológicas , Neoplasias , Humanos , Receptores de Células Matadoras Naturais , Receptor Nogo 1 , Células Matadoras Naturais , Actinas , Neoplasias/patologia
11.
Micromachines (Basel) ; 13(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36557404

RESUMO

Image-based cell sorting is essential in biological and biomedical research. The sorted cells can be used for downstream analysis to expand our knowledge of cell-to-cell differences. We previously demonstrated a user-friendly image-activated microfluidic cell sorting technique using an optimized and fast deep learning algorithm. Real-time isolation of cells was carried out using this technique with an inverted microscope. In this study, we devised a recently upgraded sorting system. The cell sorting techniques shown on the microscope were implemented as a real system. Several new features were added to make it easier for the users to conduct the real-time sorting of cells or particles. The newly added features are as follows: (1) a high-resolution linear piezo-stage is used to obtain in-focus images of the fast-flowing cells; (2) an LED strobe light was incorporated to minimize the motion blur of fast-flowing cells; and (3) a vertical syringe pump setup was used to prevent the cell sedimentation. The sorting performance of the upgraded system was demonstrated through the real-time sorting of fluorescent polystyrene beads. The sorter achieved a 99.4% sorting purity for 15 µm and 10 µm beads with an average throughput of 22.1 events per second (eps).

12.
Front Immunol ; 13: 1004171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389663

RESUMO

Adoptive cell therapy (ACT) using ex vivo engineered/expanded immune cells demonstrated poor efficacy against solid tumors, despite its great success in treating various hematopoietic malignancies. To improve ACT for solid tumors, it is crucial to comprehend how the numerous components of the tumor microenvironment (TME) surrounding solid tumor cells influence killing ability of immune cells. In this study, we sought to determine the effects of extracellular adhesion provided by extracellular matrix (ECM) of TME on immune cell cytotoxicity by devising microwell arrays coated with proteins either preventing or promoting cell adhesion. Solid tumor cells in bovine serum albumin (BSA)-coated microwells did not attach to the surfaces and exhibited a round morphology, but solid tumor cells in fibronectin (FN)-coated microwells adhered firmed to the substrates with a flat shape. The seeding densities of solid tumor cells and immune cells were tuned to maximize one-to-one pairing within a single microwell, and live cell imaging was performed to examine dynamic cell-cell interactions and immune cell cytotoxicity at a single cell level. Both natural killer (NK) cells and T cells showed higher cytotoxicity against round tumor cells in BSA-coated microwells compared to flat tumor cells in FN-coated microwells, suggesting that extracellular adhesion-mediated firm adhesion of tumor cells made them more resistant to immune cell-mediated killing. Additionally, NK cells and T cells in FN-coated microwells exhibited divergent dynamic behaviors, indicating that two distinct subsets of cytotoxic lymphocytes respond differentially to extracellular adhesion cues during target cell recognition.


Assuntos
Moléculas de Adesão Celular , Células Matadoras Naturais , Adesão Celular , Matriz Extracelular , Morte Celular
13.
Sci Rep ; 12(1): 12546, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869130

RESUMO

Immune checkpoint inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) are mainstream treatments for renal cell carcinoma (RCC). Both T cells and macrophages infiltrate the tumor microenvironment of RCC. CD47, an immune checkpoint of macrophages, transmits the "don't eat me" signal to macrophages. We propose a novel therapeutic strategy that activates the antitumor effect of macrophages. We found that CD47 was expressed in patients with RCC, and high CD47 expression was indicative of worse overall survival in datasets from The Cancer Genome Atlas. We observed that CD47-blocking antibodies enhanced the antitumor effect of macrophages against human RCC cell lines. Trogocytosis, rather than phagocytosis, occurred and was promoted by increased cell-to-cell contact between macrophages and RCC cells. Trogocytosis induced by CD47 blockade occurred in the presence of CD11b integrin signaling in macrophages and was augmented when RCC cells were exposed to VEGFR TKIs, except for sunitinib. In conclusion, this study presents evidence that anti-CD47 blocking antibodies improve the antitumor effect of macrophages in RCC. In combination with VEGFR TKIs, CD47 blockade is a potential therapeutic strategy for patients with RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Anticorpos Bloqueadores/farmacologia , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Macrófagos/metabolismo , Fagocitose , Receptores Imunológicos/metabolismo , Trogocitose , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Macromol Rapid Commun ; 43(19): e2200271, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35686322

RESUMO

Structure changes mediated by anisotropic volume changes of stimuli-responsive hydrogels are useful for many research fields, yet relatively simple structured objects are mostly used due to limitation in fabrication methods. To fabricate complex 3 dimensional (3D) structures that undergo structure changes in response to external stimuli, jammed microgel-based inks containing precursors of stimuli-responsive hydrogels are developed for extrusion-based 3D printing. Specifically, the jammed microgel-based inks are prepared by absorbing precursors of poly(acrylic acid) or poly(N-isopropylacrylamide) in poly(acrylamide) (PAAm) microgels, and jamming them. The inks exhibit shear-thinning and self-healing properties that allow extrusion of the inks through a nozzle and rapid stabilization after printing. Stimuli-mediated volume changes are observed for the extruded structures when they are post-crosslinked by UV light to form interpenetrating networks of PAAm microgels and stimuli-responsive hydrogels. Using this method, a dumbbell-shaped object that can transform to a biconvex shape, and a gripper that can grasp and lift an object in response to stimuli are 3D-printed. The jammed microgel-based 3D printing strategy is a versatile method useful for variety of applications as diverse types of monomers absorbable in the microgels can be used to fabricate complex 3D objects transformable by external stimuli.


Assuntos
Tinta , Microgéis , Hidrogéis/química , Concentração de Íons de Hidrogênio , Impressão Tridimensional , Temperatura
15.
Ann Lab Med ; 42(6): 638-649, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35765872

RESUMO

Background: Adoptive cell therapy using umbilical cord blood (UCB)-derived allogeneic natural killer (NK) cells has shown encouraging results. However, because of the insufficient availability of NK cells and limited UCB volume, more effective culture methods are required. NK cell expansion and functionality are largely affected by the culture medium. While human serum is a major affecting component in culture media, the way it regulates NK cell functionality remains elusive. We elucidated the effects of different culture media and human serum supplementation on UCB NK cell expansion and functionality. Methods: UCB NK cells were cultured under stimulation with K562-OX40L-mbIL-18/21 feeder cells and IL-2 and IL-15 in serum-containing and serum-free culture media. The effects of the culture media and human serum supplementation on NK cell expansion and cytotoxicity were evaluated by analyzing the expansion rate, activating and inhibitory receptor levels, and the cytotoxicity of the UCB NK cells. Results: The optimal medium for NK cell expansion was Dulbecco's modified Eagle's medium/Ham's F12 with supplements and that for cytotoxicity was AIM V supplemented with Immune Cell Serum Replacement. Shifting media is an advantageous strategy for obtaining several highly functional UCB NK cells. Live cell imaging and killing time measurement revealed that human serum enhanced NK cell proliferation but delayed target recognition, resulting in reduced cytotoxicity. Conclusions: Culture medium supplementation with human serum strongly affects UCB NK cell expansion and functionality. Thus, culture media should be carefully selected to ensure both NK cell quantity and quality for adoptive cell therapy.


Assuntos
Células Matadoras Naturais , Proliferação de Células , Meios de Cultura/farmacologia , Humanos
16.
Sci Adv ; 8(13): eabj3995, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353579

RESUMO

Membrane nanotubes or tunneling nanotubes (TNTs) that connect cells have been recognized as a previously unidentified pathway for intercellular transport between distant cells. However, it is unknown how this delicate structure, which extends over tens of micrometers and remains robust for hours, is formed. Here, we found that a TNT develops from a double filopodial bridge (DFB) created by the physical contact of two filopodia through helical deformation of the DFB. The transition of a DFB to a close-ended TNT is most likely triggered by disruption of the adhesion of two filopodia by mechanical energy accumulated in a twisted DFB when one of the DFB ends is firmly attached through intercellular cadherin-cadherin interactions. These studies pinpoint the mechanistic questions about TNTs and elucidate a formation mechanism.

17.
J Control Release ; 343: 379-391, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124129

RESUMO

Recent clinical successes of chimeric antigen receptor (CAR) T cell therapy have led the booming of developments in cancer immunotherapy utilizing ex vivo engineered immune cells such as T cells and natural killer (NK) cells. However, a number of issues need to be resolved for this novel therapy to become widely applicable to cancer patients as current CAR-T cell therapies are only successful in treating some blood cancers, and economically not feasible for many patients. In this review, we describe various nanomaterial-based approaches developed to overcome current limitations in ex vivo engineered T/NK cells, along with key biological principles underlying each approach. First, nanomaterials developed to improve ex vivo expansion of T/NK cells and the basic principles of T/NK cell activation for designing nanomaterials are summarized. Second, nanomaterial-based gene delivery methods to generate genetically engineered T/NK cells are discussed with an emphasis on challenges in improving transfection efficacy. Third, nanomaterials loaded to T/NK cells to enhance their anti-tumor functions and to overcome tumor microenvironment are described with key biological characteristics of T/NK cells, which are essential for nanomaterial loading and drug release from the nanomaterials. In particular, we comment on similarities and differences of methods developed for T cells and NK cells based on the biological characteristics of each cell type.


Assuntos
Nanoestruturas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Neoplasias/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Microambiente Tumoral
18.
Adv Mater ; 34(14): e2108446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032043

RESUMO

Since the pioneering discovery of a protein bound to poly(ethylene glycol), the utility of protein-polymer conjugates (PPCs) is rapidly expanding to currently emerging applications. Photoinduced energy/electron-transfer reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization is a very promising method to prepare structurally well-defined PPCs, as it eliminates high-cost and time-consuming deoxygenation processes due to its oxygen tolerance. However, the oxygen-tolerance behavior of PET-RAFT polymerization is not well-investigated in aqueous environments, and thereby the preparation of PPCs using PET-RAFT polymerization needs a substantial amount of sacrificial reducing agents or inert-gas purging processes. Herein a novel water-soluble and biocompatible organic photocatalyst (PC) is reported, which enables visible-light-driven additive-free "grafting-from" polymerizations of a protein in ambient and aqueous environments. Interestingly, the developed PC shows unconventional "oxygen-acceleration" behavior for a variety of acrylic and acrylamide monomers in aqueous conditions without any additives, which are apparently distinct from previously reported systems. With such a PC, "grafting-from" polymerizations are successfully performed from protein in ambient buffer conditions under green light-emitting diode (LED) irradiation, which result in various PPCs that have neutral, anionic, cationic, and zwitterionic polyacrylates, and polyacrylamides. It is believed that this PC will be widely employed for a variety of photocatalysis processes in aqueous environments, including the living cell system.


Assuntos
Polímeros , Água , Oxigênio , Polimerização , Proteínas
19.
Cancer Immunol Immunother ; 71(3): 613-625, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34282497

RESUMO

BACKGROUND: Natural killer (NK) cell-based immunotherapy is a promising treatment approach for multiple myeloma (MM), but obtaining a sufficient number of activated NK cells remains challenging. Here, we report an improved method to generate ex vivo expanded NK (eNK) cells from MM patients based on genetic engineering of K562 cells to express OX40 ligand and membrane-bound (mb) IL-18 and IL-21. METHODS: K562-OX40L-mbIL-18/-21 cells were generated by transducing K562-OX40L cells with a lentiviral vector encoding mbIL-18 and mbIL-21, and these were used as feeder cells to expand NK cells from peripheral blood mononuclear cells of healthy donors (HDs) and MM patients in the presence of IL-2/IL-15. Purity, expansion rate, receptor expression, and functions of eNK cells were determined over four weeks of culture. RESULTS: NK cell expansion was enhanced by short exposure of soluble IL-18 and IL-21 with K562-OX40L cells. Co-culture of NK cells with K562-OX40L-mbIL-18/-21 cells resulted in remarkable expansion of NK cells from HDs (9,860-fold) and MM patients (4,929-fold) over the 28-day culture period. Moreover, eNK cells showed increased expression of major activation markers and enhanced cytotoxicity towards target K562, U266, and RPMI8226 cells. CONCLUSIONS: Our data suggest that genetically engineered K562 cells expressing OX40L, mbIL-18, and mbIL-21 improve the expansion of NK cells, increase activation signals, and enhance their cytolytic activity towards MM cells.


Assuntos
Citotoxicidade Imunológica , Interleucina-18/metabolismo , Interleucinas/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Mieloma Múltiplo/imunologia , Ligante OX40/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citotoxicidade Imunológica/genética , Expressão Gênica , Humanos , Imunofenotipagem , Interleucina-18/genética , Interleucinas/genética , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ligante OX40/genética , Transdução Genética , Transgenes
20.
Front Immunol ; 13: 1132806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700210

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.1004171.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA