Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2802: 473-514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819569

RESUMO

Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.


Assuntos
Evolução Molecular , Genoma de Inseto , Genômica , Insetos , Animais , Insetos/genética , Genômica/métodos , Anotação de Sequência Molecular/métodos , Filogenia , Análise de Sequência de DNA/métodos
2.
J Evol Biol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630634

RESUMO

Domains as functional protein units and their rearrangements along the phylogeny can shed light on the functional changes of proteomes associated with the evolution of complex traits like eusociality. This complex trait is associated with sterile soldiers and workers, and long-lived, highly fecund reproductives. Unlike in Hymenotpera (ants, bees, and wasps), the evolution of eusociality within Blattodea, where termites evolved from within cockroaches, was accompanied by a reduction in proteome size, raising the question of whether functional novelty was achieved with existing rather than novel proteins. To address this, we investigated the role of domain rearrangements during the evolution of termite eusociality. Analysing domain rearrangements in the proteomes of three solitary cockroaches and five eusocial termites, we inferred more than 5000 rearrangements over the phylogeny of Blattodea. The 90 novel domain arrangements that emerged at the origin of termites were enriched for several functions related to longevity, such as protein homeostasis, DNA repair, mitochondrial activity, and nutrient sensing. Many domain rearrangements were related to changes in developmental pathways, important for the emergence of novel castes. Along with the elaboration of social complexity, including permanently sterile workers and larger, foraging colonies, we found 110 further domain arrangements with functions related to protein glycosylation and ion transport. We found an enrichment of caste-biased expression and splicing within rearranged genes, highlighting their importance for the evolution of castes. Furthermore, we found increased levels of DNA methylation among rearranged compared to non-rearranged genes suggesting fundamental differences in their regulation. Our findings indicate an importance of domain rearrangements in the generation of functional novelty necessary for termite eusociality to evolve.

3.
Open Biol ; 12(7): 220047, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857972

RESUMO

The reproductive castes of eusocial insects are often characterized by extreme lifespans and reproductive output, indicating an absence of the fecundity/longevity trade-off. The role of DNA methylation in the regulation of caste- and age-specific gene expression in eusocial insects is controversial. While some studies find a clear link to caste formation in honeybees and ants, others find no correlation when replication is increased across independent colonies. Although recent studies have identified transcription patterns involved in the maintenance of high reproduction throughout the long lives of queens, the role of DNA methylation in the regulation of these genes is unknown. We carried out a comparative analysis of DNA methylation in the regulation of caste-specific transcription and its importance for the regulation of fertility and longevity in queens of the higher termite Macrotermes natalensis. We found evidence for significant, well-regulated changes in DNA methylation in mature compared to young queens, especially in several genes related to ageing and fecundity in mature queens. We also found a strong link between methylation and caste-specific alternative splicing. This study reveals a complex regulatory role of fat body DNA methylation both in the division of labour in termites, and during the reproductive maturation of queens.


Assuntos
Formigas , Isópteros , Animais , Fatores Etários , Formigas/genética , Abelhas , Metilação de DNA , Insetos , Isópteros/genética
4.
Genes (Basel) ; 13(2)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35205330

RESUMO

De novo genes are novel genes which emerge from non-coding DNA. Until now, little is known about de novo genes' properties, correlated to their age and mechanisms of emergence. In this study, we investigate four related properties: introns, upstream regulatory motifs, 5' Untranslated regions (UTRs) and protein domains, in 23,135 human proto-genes. We found that proto-genes contain introns, whose number and position correlates with the genomic position of proto-gene emergence. The origin of these introns is debated, as our results suggest that 41% of proto-genes might have captured existing introns, and 13.7% of them do not splice the ORF. We show that proto-genes which emerged via overprinting tend to be more enriched in core promotor motifs, while intergenic and intronic genes are more enriched in enhancers, even if the TATA motif is most commonly found upstream in these genes. Intergenic and intronic 5' UTRs of proto-genes have a lower potential to stabilise mRNA structures than exonic proto-genes and established human genes. Finally, we confirm that proteins expressed by proto-genes gain new putative domains with age. Overall, we find that regulatory motifs inducing transcription and translation of previously non-coding sequences may facilitate proto-gene emergence. Our study demonstrates that introns, 5' UTRs, and domains have specific properties in proto-genes. We also emphasize that the genomic positions of de novo genes strongly impacts these properties.


Assuntos
Genômica , Regiões 5' não Traduzidas , Éxons/genética , Humanos , Íntrons/genética , Regiões Promotoras Genéticas
5.
Nat Chem Biol ; 16(8): 930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32533134

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
BMC Evol Biol ; 20(1): 30, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059645

RESUMO

BACKGROUND: Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions. RESULTS: In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals. CONCLUSIONS: Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.


Assuntos
Eucariotos , Evolução Molecular , Estrutura Terciária de Proteína/genética , Proteínas/química , Proteínas/genética , Animais , Abelhas/fisiologia , Resistência à Doença/genética , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Fungos/classificação , Fungos/genética , Ontologia Genética , Mutação/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Comportamento Social , Vertebrados/classificação , Vertebrados/genética , Vertebrados/metabolismo
7.
Genome Biol ; 21(1): 15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31969194

RESUMO

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Assuntos
Artrópodes/genética , Evolução Molecular , Animais , Artrópodes/classificação , Metilação de DNA , Especiação Genética , Variação Genética , Filogenia
8.
Nat Chem Biol ; 15(11): 1120-1128, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636435

RESUMO

Characterizing the adaptive landscapes that encompass the emergence of novel enzyme functions can provide molecular insights into both enzymatic and evolutionary mechanisms. Here, we combine ancestral protein reconstruction with biochemical, structural and mutational analyses to characterize the functional evolution of methyl-parathion hydrolase (MPH), an organophosphate-degrading enzyme. We identify five mutations that are necessary and sufficient for the evolution of MPH from an ancestral dihydrocoumarin hydrolase. In-depth analyses of the adaptive landscapes encompassing this evolutionary transition revealed that the mutations form a complex interaction network, defined in part by higher-order epistasis, that constrained the adaptive pathways available. By also characterizing the adaptive landscapes in terms of their functional activities towards three additional organophosphate substrates, we reveal that subtle differences in the polarity of the substrate substituents drastically alter the network of epistatic interactions. Our work suggests that the mutations function collectively to enable substrate recognition via subtle structural repositioning.


Assuntos
Epistasia Genética , Hidrolases/metabolismo , Metil Paration/metabolismo , Xenobióticos/metabolismo
9.
Nucleic Acids Res ; 47(W1): W507-W510, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31076763

RESUMO

Even in the era of next generation sequencing, in which bioinformatics tools abound, annotating transcriptomes and proteomes remains a challenge. This can have major implications for the reliability of studies based on these datasets. Therefore, quality assessment represents a crucial step prior to downstream analyses on novel transcriptomes and proteomes. DOGMA allows such a quality assessment to be carried out. The data of interest are evaluated based on a comparison with a core set of conserved protein domains and domain arrangements. Depending on the studied species, DOGMA offers precomputed core sets for different phylogenetic clades. We now developed a web server for the DOGMA software, offering a user-friendly, simple to use interface. Additionally, the server provides a graphical representation of the analysis results and their placement in comparison to publicly available data. The server is freely available under https://domainworld-services.uni-muenster.de/dogma/. Additionally, for large scale analyses the software can be downloaded free of charge from https://domainworld.uni-muenster.de.


Assuntos
Domínios Proteicos , Proteoma , Software , Transcriptoma , Genoma , Internet , Anotação de Sequência Molecular
10.
Biol Cell ; 109(1): 39-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27515976

RESUMO

BACKGROUND INFORMATION: Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H2 O2 ) stress. RESULTS: Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H2 O2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. CONCLUSIONS: This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. SIGNIFICANCE: Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1 fluctuations to stress gene expression. The frequency of ROS fluctuations seemed to integrate information about ROS productionrate and GSH antioxidant buffer capacity, resulting in stress protein expression of different speed. Results of this study suggest ROS as early (pre-damage) and protein defects as later (post-damage) stress signals to trigger heat stress responses.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Daphnia/fisiologia , Regulação da Expressão Gênica , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Ligação a DNA/genética , Daphnia/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico , Hemoglobinas/genética , Hemoglobinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética
11.
Bioinformatics ; 32(17): 2577-81, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153665

RESUMO

MOTIVATION: Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. RESULTS: We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. AVAILABILITY AND IMPLEMENTATION: DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteoma , Software , Transcriptoma , Biologia Computacional , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA