Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
iScience ; 27(5): 109716, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38655202

RESUMO

The viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S induces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vaccination in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated comparators. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccination is mediated by affinity maturation.

2.
J Infect Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566610

RESUMO

Prior infection with SARS-CoV-2 is typically measured by nucleocapsid serology assays. In this study, we show that the Simoa serology assays and T cell intracellular cytokine staining assays are more sensitive than the clinical Elecsys assay for detection of nucleocapsid-specific immune responses. These data suggest that the prevalence of prior SARS-CoV-2 infection in the population may be higher than currently appreciated.

3.
Sci Transl Med ; 16(740): eadl4317, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536937

RESUMO

The 2022-2023 mpox outbreak triggered vaccination efforts using smallpox vaccines that were approved for mpox, including modified vaccinia Ankara (MVA; JYNNEOS), which is a safer alternative to live replicating vaccinia virus (ACAM2000). Here, we compare the immunogenicity and protective efficacy of JYNNEOS by the subcutaneous or intradermal routes, ACAM2000 by the percutaneous route, and subunit Ad35 vector-based L1R/B5R or L1R/B5R/A27L/A33R vaccines by the intramuscular route in rhesus macaques. All vaccines provided robust protection against high-dose intravenous mpox virus challenge with the current outbreak strain, with ACAM2000 providing near complete protection and JYNNEOS and Ad35 vaccines providing robust but incomplete protection. Protection correlated with neutralizing antibody responses as well as L1R/M1R- and B5R/B6R-specific binding antibody responses, although additional immune responses likely also contributed to protection. This study demonstrates the protective efficacy of multiple vaccine platforms against mpox virus challenge, including both current clinical vaccines and vectored subunit vaccines.


Assuntos
Mpox , Vacina Antivariólica , Animais , Vaccinia virus/genética , Macaca mulatta , Anticorpos Antivirais , Vacinas de Subunidades Antigênicas
4.
Nat Biotechnol ; 42(3): 510-517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37095347

RESUMO

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , Vacinas de mRNA , RNA Mensageiro/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle
5.
Nature ; 626(7998): 385-391, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096903

RESUMO

A limitation of current SARS-CoV-2 vaccines is that they provide minimal protection against infection with current Omicron subvariants1,2, although they still provide protection against severe disease. Enhanced mucosal immunity may be required to block infection and onward transmission. Intranasal administration of current vaccines has proven inconsistent3-7, suggesting that alternative immunization strategies may be required. Here we show that intratracheal boosting with a bivalent Ad26-based SARS-CoV-2 vaccine results in substantial induction of mucosal humoral and cellular immunity and near-complete protection against SARS-CoV-2 BQ.1.1 challenge. A total of 40 previously immunized rhesus macaques were boosted with a bivalent Ad26 vaccine by the intramuscular, intranasal and intratracheal routes, or with a bivalent mRNA vaccine by the intranasal route. Ad26 boosting by the intratracheal route led to a substantial expansion of mucosal neutralizing antibodies, IgG and IgA binding antibodies, and CD8+ and CD4+ T cell responses, which exceeded those induced by Ad26 boosting by the intramuscular and intranasal routes. Intratracheal Ad26 boosting also led to robust upregulation of cytokine, natural killer, and T and B cell pathways in the lungs. After challenge with a high dose of SARS-CoV-2 BQ.1.1, intratracheal Ad26 boosting provided near-complete protection, whereas the other boosting strategies proved less effective. Protective efficacy correlated best with mucosal humoral and cellular immune responses. These data demonstrate that these immunization strategies induce robust mucosal immunity, suggesting the feasibility of developing vaccines that block respiratory viral infections.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade nas Mucosas , Imunização Secundária , Macaca mulatta , SARS-CoV-2 , Animais , Humanos , Administração Intranasal , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Citocinas/imunologia , Imunidade nas Mucosas/imunologia , Imunização Secundária/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Injeções Intramusculares , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Traqueia/imunologia , Traqueia/virologia
6.
Cell ; 186(21): 4652-4661.e13, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734373

RESUMO

The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.


Assuntos
Macaca mulatta , Monkeypox virus , Mpox , Animais , Humanos , Masculino , Homossexualidade Masculina , Mpox/imunologia , Minorias Sexuais e de Gênero , Monkeypox virus/fisiologia
7.
Res Sq ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163131

RESUMO

We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).

8.
Nat Commun ; 14(1): 1944, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029141

RESUMO

Omicron spike (S) encoding vaccines as boosters, are a potential strategy to improve COVID-19 vaccine efficacy against Omicron. Here, macaques (mostly females) previously immunized with Ad26.COV2.S, are boosted with Ad26.COV2.S, Ad26.COV2.S.529 (encoding Omicron BA.1 S) or a 1:1 combination of both vaccines. All booster vaccinations elicit a rapid antibody titers increase against WA1/2020 and Omicron S. Omicron BA.1 and BA.2 antibody responses are most effectively boosted by vaccines including Ad26.COV2.S.529. Independent of vaccine used, mostly WA1/2020-reactive or WA1/2020-Omicron BA.1 cross-reactive B cells are detected. Ad26.COV2.S.529 containing boosters provide only slightly higher protection of the lower respiratory tract against Omicron BA.1 challenge compared with Ad26.COV2.S-only booster. Antibodies and cellular immune responses are identified as complementary correlates of protection. Overall, a booster with an Omicron-spike based vaccine provide only moderately improved immune responses and protection compared with the original Wuhan-Hu-1-spike based vaccine, which still provide robust immune responses and protection against Omicron.


Assuntos
COVID-19 , Vacinas , Feminino , Animais , Humanos , Masculino , Ad26COVS1 , Vacinas contra COVID-19 , Macaca , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
Cell Rep Med ; 4(4): 101018, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines demonstrate reduced protection against acquisition of BA.5 subvariant but are still effective against severe disease. However, immune correlates of protection against BA.5 remain unknown. We report the immunogenicity and protective efficacy of vaccine regimens consisting of the vector-based Ad26.COV2.S vaccine and the adjuvanted spike ferritin nanoparticle (SpFN) vaccine against a high-dose, mismatched Omicron BA.5 challenge in macaques. The SpFNx3 and Ad26 + SpFNx2 regimens elicit higher antibody responses than Ad26x3, whereas the Ad26 + SpFNx2 and Ad26x3 regimens induce higher CD8 T cell responses than SpFNx3. The Ad26 + SpFNx2 regimen elicits the highest CD4 T cell responses. All three regimens suppress peak and day 4 viral loads in the respiratory tract, which correlate with both humoral and cellular immune responses. This study demonstrates that both homologous and heterologous regimens involving Ad26.COV2.S and SpFN vaccines provide robust protection against a mismatched BA.5 challenge in macaques.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , Animais , Macaca , Ad26COVS1 , COVID-19/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ferritinas
10.
NPJ Vaccines ; 8(1): 23, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823160

RESUMO

Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.

12.
Diabet Med ; 40(4): e15034, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572988

RESUMO

AIMS: Type 2 diabetes is a risk factor for late-life dementia, but dementia prevention strategies have yet to be comprehensively evaluated in people with diabetes. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) demonstrated cognitive benefits of a 2-year multidomain lifestyle intervention. However, given the intensive nature of FINGER, there is uncertainty about whether it can be implemented in other high-risk populations. Our aim was to explore attitudes towards dementia risk, and barriers to an intervention based on the FINGER model in older adults with type 2 diabetes living in rural areas of Ireland. METHODS: Focus groups were conducted with 21 adults (11 men and 10 women) aged 60+ years with type 2 diabetes living in border regions of north and south Ireland. Data were analysed using thematic analysis. RESULTS: There was limited understanding of diabetes as a risk factor for late-life dementia. The main barriers to engagement with the multidomain intervention were eating foods that were not compatible with cultural norms, time and travel constraints, and perceived lack of self-efficacy and self-motivation for adopting the desired diet, exercise and computerised cognitive training (CCT) behaviours. Facilitators for intervention acceptability included the provision of culturally tailored and personalised education, support from a trusted source, and inclusion of goal setting and self-monitoring behavioural strategies. CONCLUSIONS: While there was high acceptability for a brain health intervention, several barriers including cultural food norms and low self-efficacy for adopting the diet, exercise and CCT components would need to be considered in the intervention design. Findings from this study will be used to inform local decisions regarding the adaptation of FINGER for people with type 2 diabetes. The feasibility of the adapted multidomain intervention will then be evaluated in a future pilot trial.


Assuntos
Disfunção Cognitiva , Demência , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Feminino , Idoso , Diabetes Mellitus Tipo 2/psicologia , Irlanda , Encéfalo
13.
Sci Adv ; 8(47): eade4433, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417525

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.

14.
bioRxiv ; 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36324798

RESUMO

Waning immunity following mRNA vaccination and the emergence of SARS-CoV-2 variants has led to reduced mRNA vaccine efficacy against both symptomatic infection and severe disease. Bivalent mRNA boosters expressing the Omicron BA.5 and ancestral WA1/2020 Spike proteins have been developed and approved, because BA.5 is currently the dominant SARS-CoV-2 variant and substantially evades neutralizing antibodies (NAbs). Our data show that BA.5 NAb titers were comparable following monovalent and bivalent mRNA boosters.

15.
Sci Immunol ; 7(77): eabq7647, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35943359

RESUMO

Spike-specific neutralizing antibodies (NAbs) are generally considered key correlates of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recently, robust vaccine prevention of severe disease with SARS-CoV-2 variants that largely escape NAb responses has been reported, suggesting a role for other immune parameters for virologic control. However, direct data demonstrating a role of CD8+ T cells in vaccine protection have not yet been reported. In this study, we show that vaccine-elicited CD8+ T cells contribute substantially to virologic control after SARS-CoV-2 challenge in rhesus macaques. We vaccinated 30 macaques with a single immunization of the adenovirus vector-based vaccine Ad26.COV2.S or sham and then challenged them with 5 × 105 median tissue culture infectious dose SARS-CoV-2 B.1.617.2 (Delta) by the intranasal and intratracheal routes. All vaccinated animals were infected by this high-dose challenge but showed rapid virologic control in nasal swabs and bronchoalveolar lavage by day 4 after challenge. However, administration of an anti-CD8α- or anti-CD8ß-depleting monoclonal antibody in vaccinated animals before SARS-CoV-2 challenge resulted in higher levels of peak and day 4 virus in both the upper and lower respiratory tracts. These data demonstrate that CD8+ T cells contribute substantially to vaccine protection against SARS-CoV-2 replication in macaques.


Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Macaca mulatta , Ad26COVS1 , COVID-19/prevenção & controle
16.
JAMA Netw Open ; 5(8): e2226335, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947380

RESUMO

Importance: Antibody responses elicited by current messenger RNA (mRNA) COVID-19 vaccines decline rapidly and require repeated boosting. Objective: To evaluate the immunogenicity and durability of heterologous and homologous prime-boost regimens involving the adenovirus vector vaccine Ad26.COV2.S and the mRNA vaccine BNT162b2. Design, Setting, and Participants: In this cohort study at a single clinical site in Boston, Massachusetts, 68 individuals who were vaccinated at least 6 months previously with 2 immunizations of BNT162b2 were boosted with either Ad26.COV2.S or BNT162b2. Enrollment of participants occurred from August 12, 2021, to October 25, 2021, and this study involved 4 months of follow-up. Data analysis was performed from November 2021 to February 2022. Exposures: Participants who were previously vaccinated with BNT162b2 received a boost with either Ad26.COV2.S or BNT162b2. Main Outcomes and Measures: Humoral immune responses were assessed by neutralizing, binding, and functional antibody responses for 16 weeks following the boost. CD8+ and CD4+ T-cell responses were evaluated by intracellular cytokine staining assays. Results: Among 68 participants who were originally vaccinated with BNT162b2 and boosted with Ad26.COV2.S (41 participants; median [range] age, 36 [23-84] years) or BNT162b2 (27 participants; median [range] age, 35 [23-76] years), 56 participants (82%) were female, 7 (10%) were Asian, 4 (6%) were Black, 4 (6%) were Hispanic or Latino, 3 (4%) were more than 1 race, and 53 (78%) were White. Both vaccines were found to be associated with increased humoral and cellular immune responses, including against SARS-CoV-2 variants of concern. BNT162b2 boosting was associated with a rapid increase of Omicron neutralizing antibodies that peaked at a median (IQR) titer of 1018 (699-1646) at week 2 and declined by 6.9-fold to a median (IQR) titer of 148 (95-266) by week 16. Ad26.COV2.S boosting was associated with increased Omicron neutralizing antibodies titers that peaked at a median (IQR) of 859 (467-1838) week 4 and declined by 2.1-fold to a median (IQR) of 403 (208-1130) by week 16. Conclusions and Relevance: Heterologous Ad26.COV2.S boosting was associated with durable humoral and cellular immune responses in individuals who originally received the BNT162b2 vaccine. These data suggest potential benefits of heterologous prime-boost vaccine regimens for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Adulto , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Humanos , Masculino , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
17.
Sci Transl Med ; 14(665): eabo6160, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35857623

RESUMO

Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
18.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35427477

RESUMO

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Assuntos
Ad26COVS1/imunologia , Vacina BNT162/imunologia , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Linfócitos T/imunologia
19.
Sci Transl Med ; 14(641): eabn6150, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35258323

RESUMO

Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported frequently in vaccinated individuals with waning immunity. In particular, a cluster of over 1000 infections with the SARS-CoV-2 delta variant was identified in a predominantly fully vaccinated population in Provincetown, Massachusetts in July 2021. In this study, vaccinated individuals who tested positive for SARS-CoV-2 (n = 16) demonstrated substantially higher serum antibody responses than vaccinated individuals who tested negative for SARS-CoV-2 (n = 23), including 32-fold higher binding antibody titers and 31-fold higher neutralizing antibody titers against the SARS-CoV-2 delta variant. Vaccinated individuals who tested positive also showed higher mucosal antibody responses in nasal secretions and higher spike protein-specific CD8+ T cell responses in peripheral blood than did vaccinated individuals who tested negative. These data demonstrate that fully vaccinated individuals developed robust anamnestic antibody and T cell responses after infection with the SARS-CoV-2 delta variant. Moreover, these findings suggest that population immunity will likely increase over time by a combination of widespread vaccination and breakthrough infections.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Formação de Anticorpos , Humanos
20.
NPJ Vaccines ; 7(1): 23, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197477

RESUMO

Emerging SARS-CoV-2 variants with the potential to escape binding and neutralizing antibody responses pose a threat to vaccine efficacy. We recently reported expansion of broadly neutralizing activity of vaccine-elicited antibodies in humans 8 months following a single immunization with Ad26.COV2.S. Here, we assessed the 15-month durability of antibody responses and their neutralizing capacity to B.1.617.2 (delta) and B.1.351 (beta) variants following a single immunization of Ad26.COV2.S in mice. We report the persistence of binding and neutralizing antibody titers following immunization with a concomitant increase in neutralizing antibody breadth to delta and beta variants over time. Evaluation of bone marrow and spleen at 15 months postimmunization revealed that Ad26.COV2.S-immunized mice tissues contained spike-specific antibody-secreting cells. We conclude that immunization with Ad26.COV2.S elicits a robust immune response against SARS-CoV-2 spike, which expands over time to neutralize delta and beta variants more robustly, and seeds bone marrow and spleen with long-lived spike-specific antibody-secreting cells. These data extend previous findings in humans and support the use of a mouse model as a potential tool to further explore the dynamics of the humoral immune response following vaccination with Ad26.COV2.S.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA