Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micron ; 85: 51-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27088229

RESUMO

In the ovary epidermis of O. umbellatum there are lipotubuloid metabolons (LMs), in which synthesis of lipids takes place. This process partly provides nourishment, and partly cuticle building blocks, transformed, among others, with the participation of cutinsomes. The cutinsomes are cutin-building structures, 40-200nm in size, which are formed as a result of self-assembly and self-esterification of hydroxy fatty acids. The cutinsomes, by binding to the cuticle, introduce into it nonlinear, amorphous and cross-linked polymers. Double-immunogold EM observations revealed that enzymes producing elements of cutin (GPAT6) and waxes (WS/DGAT) were found not only as free cytoplasmic molecules but also in many cases they were bound to carboxylate-carboxylic shell of cuntinsomes. Hence, we suppose that these enzymes can move alone or together with the cutinsomes through cytoplasm (pH 6.8-7.0), plasmalemma and the polysaccharide layer of a cell wall to the site of their functioning i.e. to the cuticle (pH 5.0).


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Flores/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Liliaceae/metabolismo , Metabolismo dos Lipídeos , Lipídeos de Membrana/química , Epiderme Vegetal/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Membrana Celular/química , Membrana Celular/enzimologia , Membrana Celular/fisiologia , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/fisiologia , Matriz Extracelular/metabolismo , Liliaceae/enzimologia , Nanopartículas/química , Proteínas de Plantas/metabolismo
2.
J Exp Bot ; 66(5): 1157-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540439

RESUMO

A metabolon is a temporary, structural-functional complex formed between sequential metabolic enzymes and cellular elements. Cytoplasmic domains called lipotubuloids are present in Ornithogalum umbellatum ovary epidermis. They consist of numerous lipid bodies entwined with microtubules, polysomes, rough endoplasmic reticulum (RER), and actin filaments connected to microtubules through myosin and kinesin. A few mitochondria, Golgi structures, and microbodies are also observed and also, at later development stages, autolytic vacuoles. Each lipotubuloid is surrounded by a tonoplast as it invaginates into a vacuole. These structures appear in young cells, which grow intensively reaching 30-fold enlargement but do not divide. They also become larger due to an increasing number of lipid bodies formed in the RER by the accumulation of lipids between leaflets of the phospholipid bilayer. When a cell ceases to grow, the lipotubuloids disintegrate into individual structures. Light and electron microscope studies using filming techniques, autoradiography with [(3)H]palmitic acid, immunogold labelling with antibodies against DGAT2, phospholipase D1 and lipase, and double immunogold labelling with antibodies against myosin and kinesin, as well as experiments with propyzamide, a microtubule activity inhibitor, have shown that lipotubuloids are functionally and structurally integrated metabolons [here termed lipotubuloid metabolons (LMs)] occurring temporarily in growing cells. They synthesize lipids in lipid bodies in cooperation with microtubules. Some of these lipids are metabolized and used by the cell as nutrients, and others are transformed into cuticle whose formation is mediated by cutinsomes. The latter were discovered in planta using specific anti-cutinsome antibodies visualized by gold labelling. Moreover, LMs are able to rotate autonomously due to the interaction of microtubules, actin filaments, and motor proteins, which influence microtubules by changing their diameter.


Assuntos
Flores/metabolismo , Metabolismo dos Lipídeos , Ornithogalum/metabolismo , Epiderme Vegetal/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Proteínas de Plantas/metabolismo
3.
Protoplasma ; 251(5): 1151-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24627134

RESUMO

The outer wall of Ornithogalum umbellatum ovary and the fruit epidermis are covered with a thick cuticle and contain lipotubuloids incorporating (3)H-palmitic acid. This was earlier evidenced by selective autoradiographic labelling of lipotubuloids. After post-incubation in a non-radioactive medium, some marked particles insoluble in organic solvents (similar to cutin matrix) moved to the cuticular layer. Hence, it was hypothesised that lipotubuloids participated in cuticle synthesis. It was previously suggested that cutinsomes, nanoparticles containing polyhydroxy fatty acids, formed the cuticle. Thus, identification of the cutinsomes in O. umbellatum ovary epidermal cells, including lipotubuloids, was undertaken in order to verify the idea of lipotubuloid participation in cuticle synthesis in this species. Electron microscopy and immunogold method with the antibodies recognizing cutinsomes were used to identify these structures. They were mostly found in the outer cell wall, the cuticular layer and the cuticle proper. A lower but still significant degree of labelling was also observed in lipotubuloids, cytoplasm and near plasmalemma of epidermal cells. It seems that cutinsomes are formed in lipotubuloids and then they leave them and move towards the cuticle in epidermal cells of O. umbellatum ovary. Thus, we suggest that (1) cutinsomes could take part in the synthesis of cuticle components also in plant species other than tomato, (2) the lipotubuloids are the cytoplasmic domains connected with cuticle formation and (3) this process proceeds via cutinsomes.


Assuntos
Flores/crescimento & desenvolvimento , Microtúbulos/metabolismo , Ornithogalum/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Parede Celular/metabolismo , Ácidos Graxos/biossíntese , Flores/citologia , Imuno-Histoquímica , Lipídeos de Membrana/biossíntese , Microscopia Eletrônica , Ornithogalum/citologia , Ácido Palmítico/metabolismo , Epiderme Vegetal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA