Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 67(14)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714599

RESUMO

Current Monte Carlo simulations of DNA damage have been reported only at ambient temperature. The aim of this work is to use TOPAS-nBio to simulate the yields of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) produced in plasmids under low-LET irradiation incorporating the effect of the temperature changes in the environment. A new feature was implemented in TOPAS-nBio to incorporate reaction rates used in the simulation of the chemical stage of water radiolysis as a function of temperature. The implemented feature was verified by simulating temperature-dependentG-values of chemical species in liquid water from 20 °C to 90 °C. For radiobiology applications, temperature dependent SSB and DSB yields were calculated from 0 °C to 42 °C, the range of available published measured data. For that, supercoiled DNA plasmids dissolved in aerated solutions containing EDTA irradiated by Cobalt-60 gamma-rays were simulated. TOPAS-nBio well reproduced published temperature-dependentG-values in liquid water and the yields of SSB and DSB for the temperature range considered. For strand break simulations, the model shows that the yield of SSB and DSB increased linearly with the temperature at a rate of (2.94 ± 0.17) × 10-10Gy-1Da-1°C-1(R2 = 0.99) and (0.13 ± 0.01) × 10-10Gy-1Da-1°C-1(R2 = 0.99), respectively. The extended capability of TOPAS-nBio is a complementary tool to simulate realistic conditions for a large range of environmental temperatures, allowing refined investigations of the biological effects of radiation.


Assuntos
Dano ao DNA , Água , DNA , Método de Monte Carlo , Temperatura
2.
Med Phys ; 47(11): 5919-5930, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32970844

RESUMO

PURPOSE: The simulation of individual particle tracks and the chemical stage following water radiolysis in biological tissue is an effective means of improving our knowledge of the physico-chemical contribution to the biological effect of ionizing radiation. However, the step-by-step simulation of the reaction kinetics of radiolytic species is the most time-consuming task in Monte Carlo track-structure simulations, with long simulation times that are an impediment to research. In this work, we present the implementation of the independent reaction times (IRT) method in Geant4-DNA Monte Carlo toolkit to improve the computational efficiency of calculating G-values, defined as the number of chemical species created or lost per 100 eV of deposited energy. METHODS: The computational efficiency of IRT, as implemented, is compared to that from available Geant4-DNA step-by-step simulations for electrons, protons and alpha particles covering a wide range of linear energy transfer (LET). The accuracy of both methods is verified using published measured data from fast electron irradiations for • OH and e aq - for time-dependent G-values. For IRT, simulations in the presence of scavengers irradiated by cobalt-60 γ-ray and 2 MeV protons are compared with measured data for different scavenging capacities. In addition, a qualitative assessment comparing measured LET-dependent G-values with Geant4-DNA calculations in pure liquid water is presented. RESULTS: The IRT improved the computational efficiency by three orders of magnitude relative to the step-by-step method while differences in G-values by 3.9% at 1 µs were found. At 7 ps, • OH and e aq - yields calculated with IRT differed from recent published measured data by 5% ± 4% and 2% ± 4%, respectively. At 1 µs, differences were 9% ± 5% and 6% ± 7% for • OH and e aq - , respectively. Uncertainties are one standard deviation. Finally, G-values at different scavenging capacities and LET-dependent G-values reproduced the behavior of measurements for all radiation qualities. CONCLUSION: The comprehensive validation of the Geant4-DNA capabilities to accurately simulate the chemistry following water radiolysis is an ongoing work. The implementation presented in this work is a necessary step to facilitate performing such a task.


Assuntos
Transferência Linear de Energia , Modelos Químicos , Simulação por Computador , DNA , Método de Monte Carlo , Tempo de Reação , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA