Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 69: 172-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24447894

RESUMO

The reactions of NO2 with both oxidized and reduced cytochrome c at pH 7.2 and 7.4, respectively, and with N-acetyltyrosine amide and N-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO2 oxidizes N-acetyltyrosine amide and N-acetyltryptophan amide with rate constants of (3.1±0.3)×10(5) and (1.1±0.1)×10(6) M(-1) s(-1), respectively. With iron(III)cytochrome c, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome c are observed. The second-order rate constant is (5.8±0.7)×10(6) M(-1) s(-1) at pH 7.2. NO2 oxidizes iron(II)cytochrome c with a second-order rate constant of (6.6±0.5)×10(7) M(-1) s(-1) at pH 7.4; formation of iron(III)cytochrome c is quantitative. Based on these rate constants, we propose that the reaction with iron(II)cytochrome c proceeds via a mechanism in which 90% of NO2 oxidizes the iron center directly-most probably via reaction at the solvent-accessible heme edge-whereas 10% oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome c is also oxidized by peroxynitrite in the presence of CO2 to iron(III)cytochrome c, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO2 will attack preferentially the reduced form of cytochrome c; protein damage is expected to be marginal, the consequence of formation of amino acid radicals on iron(III)cytochrome c.


Assuntos
Citocromos c/metabolismo , Ferro/química , Dióxido de Nitrogênio/química , Oxirredução , Aminoácidos/química , Citocromos c/química , Heme/química , Heme/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dióxido de Nitrogênio/metabolismo , Radiólise de Impulso , Triptofano/análogos & derivados , Triptofano/química , Tirosina/análogos & derivados , Tirosina/química
2.
Free Radic Biol Med ; 53(8): 1565-73, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22910232

RESUMO

Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O2 and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O2 and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O2 and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress.


Assuntos
Aminoácidos/metabolismo , Ácido Ascórbico/metabolismo , Radicais Livres/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Humanos , Oxirredução , Radiólise de Impulso
3.
Free Radic Biol Med ; 52(9): 1929-36, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406318

RESUMO

The repair of tryptophan and tyrosine radicals in proteins by urate was studied by pulse radiolysis. In chymotrypsin, urate repairs tryptophan radicals efficiently with a rate constant of 2.7 × 10(8)M(-1)s(-1), ca. 14 times higher than the rate constant derived for N-acetyltryptophan amide, 1.9 × 10(7)M(-1)s(-1). In contrast, no repair of tryptophan radicals was observed in pepsin, which indicates a rate constant smaller than 6 × 10(7)M(-1)s(-1). Urate repairs tyrosine radicals in pepsin with a rate constant of 3 × 10(8)M(-1)s(-1)-ca. 12 times smaller than the rate constant reported for free tyrosine-but not in chymotrypsin, which implies an upper limit of 1 × 10(6)M(-1)s(-1) for the corresponding rate constant. Intra- and intermolecular electron transfer from tyrosine residues to tryptophan radicals is observed in both proteins, however, to different extents and with different rate constants. Urate inhibits electron transfer in chymotrypsin but not in pepsin. Our results suggest that urate repairs the first step on the long path to protein modification and prevents damage in vivo. It may prove to be a very important repair agent in tissue compartments where its concentration is higher than that of ascorbate. The product of such repair, the urate radical, can be reduced by ascorbate. Loss of ascorbate is then expected to be the net result, whereas urate is conserved.


Assuntos
Proteínas/química , Ácido Úrico/química , Aminoácidos/química , Cinética
4.
Phys Chem Chem Phys ; 12(37): 11609-16, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20689867

RESUMO

An understanding of the reactivity of oligomeric compounds that model fuel cell membrane materials under oxidative-stress conditions that mimic the fuel cell operating environment can identify material weaknesses and yield valuable insights into how a polymer might be modified to improve oxidative stability. The reaction of HO˙ radicals with a polymer electrolyte fuel cell membrane represents an initiation step for irreversible membrane oxidation. By means of pulse radiolysis, we measured k = (9.5 ± 0.6) × 10(9) M(-1) s(-1) for the reaction of HO˙ with poly(sodium styrene sulfonate), PSSS, with an average molecular weight of 1100 Da (PSSS-1100) in aqueous solution at room temperature. In the initial reaction of HO˙ with the oligomer (90 ± 10)% react by addition to form hydroxycyclohexadienyl radicals, while the remaining abstract a hydrogen to yield benzyl radicals. The hydroxycyclohexadienyl radicals react reversibly with dioxygen to form the corresponding peroxyl radicals; the second-order rate constant for the forward reaction is k(f) = (3.0 ± 0.5) × 10(7) M(-1) s(-1), and for the back reaction, we derive an upper limit for the rate constant k(r) of (4.5 ± 0.9) × 10(3) s(-1). These data place a lower bound on the equilibrium constant K of (7 ± 2) × 10(3) M(-1) at 295 K, which allows us to calculate a lower limit of the Gibbs energy for the reaction, (-21.7 ± 0.8) kJ mol(-1). At pH 1, the hydroxycyclohexadienyl radicals decay with an overall first-order rate constant k of (6 ± 1) × 10(3) s(-1) to yield benzyl radicals. The second-order rate constant for reaction of dioxygen with benzyl radicals of PSSS-1100 is k = (2-5) × 10(8) M(-1) s(-1). We discuss hydrogen abstraction from PSSS-1100 in terms of the bond dissociation energy, and relate these to relevant electrode potentials. We propose a reaction mechanism for the decay of hydroxycyclohexadienyl radicals and subsequent reaction steps.

5.
Free Radic Biol Med ; 46(8): 1049-57, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19185609

RESUMO

Protein radicals were selectively generated by reaction with azide radicals on Trp and Tyr residues in insulin, beta-lactoglobulin, pepsin, chymotrypsin, and bovine serum albumin at rate constants in the range (2.9-19)x10(8) M(-1) s(-1). Monohydrogen ascorbate reduced tryptophanyl radicals in chymotrypsin and pepsin with rate constants in the narrow range of (1.6-1.8)x10(8) M(-1) s(-1), whereas beta-lactoglobulin tryptophanyl radicals reacted almost 10 times slower. The corresponding values for the protein tyrosyl radicals were about an order of magnitude smaller. Comparison of the rate constants of reactions of free and protein-bound tryptophanyl and tyrosyl radicals showed that, in most cases, the location of the radicals in the protein chain did not constitute a major barrier to the reaction with monohydrogen ascorbate. The results suggest that, under physiological concentrations of dioxygen, monohydrogen ascorbate is likely to be a significant target of protein radicals. It seems likely, therefore, that reaction with protein radicals may be responsible for much of the well-documented loss of ascorbate in living organisms subjected to oxidative stress.


Assuntos
Ácido Ascórbico/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Animais , Ácido Ascórbico/química , Bovinos , Quimotripsina/química , Quimotripsina/metabolismo , Técnicas In Vitro , Insulina/química , Insulina/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Pepsina A/química , Pepsina A/metabolismo , Ligação Proteica , Radiólise de Impulso , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Suínos , Triptofano/metabolismo , Tirosina/metabolismo
6.
J Biol Inorg Chem ; 12(1): 118-25, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17004073

RESUMO

The reaction of the trioxidocarbonate(*1-) radical (CO (3) (*-) , "carbonate radical anion") with cytochrome c was studied by pulse radiolysis at alkaline pH and room temperature. With iron(III) cytochrome c, CO (3) (*-) reacts with the protein moiety with rate constants of (5.1 +/- 0.6) x 10(7) M(-1) s(-1) (pH 8.4, I approximately 0.27 M) and (1.0 +/- 0.2) x 10(8) M(-1) s(-1) (pH 10, I = 0.5 M). The absorption spectrum of the haem moiety was not changed, thus, amino acid radicals produced on the protein do not reduce the haem. The pH-dependent difference in rate constants may be attributed to differences in ionization states of amino acids and to the change in the conformation of the protein. With iron(II) cytochrome c, CO (3) (*-) oxidizes the haem quantitatively, presumably via electrostatic guidance of the radical to the solvent-accessible haem edge, with a different pH dependence: at pH 8.4, the rate constant is (1.1 +/- 0.1) x 10(9) M(-1) s(-1) and, at pH 10, (7.6 +/- 0.6) x 10(8) M(-1) s(-1). We propose that CO (3) (*-) oxidizes the iron center directly, and that the lower rate observed at pH 10 is due to the different charge distribution of iron(II) cytochrome c.


Assuntos
Carbonatos/química , Citocromos c/química , Radicais Livres/química , Oxirredução , Radiólise de Impulso , Sensibilidade e Especificidade , Fatores de Tempo
7.
J Phys Chem A ; 110(11): 3927-32, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539414

RESUMO

The reactions of carbonate radical anion [CO3*-, systematic name: trioxidocarbonate*1-] with nitrosyl(II)hemoglobin (HbFe(II)NO) and nitrosyl(II)myoglobin (MbFe(II)NO) were studied by pulse radiolysis in N2O-saturated 0.25 M sodium bicarbonate solutions at pH 10.0 and room temperature. The reactions proceed in two steps: outer-sphere oxidation of the nitrosyliron(II) proteins to their corresponding nitrosyliron(III) forms and subsequent dissociation of NO*. The second-order rate constants measured for the first reaction steps were (4.3 +/- 0.2) x 10(8) and (1.5 +/- 0.3) x 10(8) M(-1) s(-1), for MbFe(II)NO and HbFe(II)NO, respectively. The reactions between nitrogen dioxide and MbFe(II)NO or HbFe(II)NO were studied by pulse radiolysis in N2O-saturated 0.1 M phosphate buffer pH 7.4 containing 5 mM nitrite. Also for the reactions of this oxidant with the nitrosyliron(II) forms of Mb and Hb a two-step reaction was observed: oxidation of the iron was followed by dissociation of NO*. The second-order rate constants measured for the first reaction steps were (2.9 +/- 0.3) x 10(7) and (1.8 +/- 0.3) x 10(7) M(-1) s(-1), for MbFe(II)NO and HbFe(II)NO, respectively. Both radicals appear to be able to oxidize the iron(II) centers of the proteins directly. Only for the reactions with HbFe(II)NO it cannot be excluded that, in a parallel reaction, CO3*- and NO2* first react with amino acid(s) of the globin, which then oxidize the nitrosyliron(II) center.


Assuntos
Carbonatos/química , Hemoglobinas/química , Mioglobina/química , Óxidos de Nitrogênio/química , Radicais Livres/química , Radiólise de Impulso/métodos , Sensibilidade e Especificidade
8.
J Liposome Res ; 15(1-2): 29-47, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16194926

RESUMO

A chemical regulation of POPC liposome size distribution was investigated, based on the affinity of indole-containing compounds for phosphocholine membranes. In particular, tryptophan oligopeptides have shown interesting properties of size regulation, both when liposomes were formed in their presence and when the peptides were added to a preformed liposome suspension. Combining dynamic light scattering (DLS) and turbidimetric data, it was possible to show how such peptides had an influence on the size distribution of spontaneously formed liposomes prepared by the thin film hydration, reverse-phase evaporation and ethanol (or methanol) injection methods. In the presence of Trp-Trp or Trp-Trp-Trp, a disappearance of large vesicle aggregates was observed, as suggested also by light microscopy analysis. On the contrary, no effect was detected using extruded vesicles. Turbidimetric titration allowed the determination of the relative efficacy of the size regulators, Trp-Trp-Trp being about 20 times more powerful than the dimer, while the monomer had no effect. In addition, other indole-containing compounds and the antimicrobial peptide indolicidin were tested, showing similar behaviours. Discussing the results according to the current knowledge about the preference of Trp residues for interfacial regions in lecithin bilayers, this study confirms the relevant role of tryptophan in the biomembrane binding properties of many peptides and introduces a new behavior in the field of liposomes-peptides interactions.


Assuntos
Lipossomos , Oligopeptídeos/metabolismo , Fosfatidilcolinas/química , Triptofano/metabolismo , Indóis/química , Luz , Lipossomos/química , Lipossomos/metabolismo , Nefelometria e Turbidimetria , Oligopeptídeos/genética , Tamanho da Partícula
9.
J Liposome Res ; 12(3): 205-20, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12604027

RESUMO

A dynamic light scattering study of the size distribution of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) liposomes formed by the injection method is presented. By this method, an aliquot of methanol stock solution containing the surfactant is injected into water. The main aim of the present work was to determine under which conditions a monomodal and narrow size distribution could be obtained. The influence of several parameters on the size distribution was investigated. Firstly, we examined the influence of the POPC concentration in the initial stock methanol solution, when the POPC concentration in the final aqueous solution remains constant; secondly, the influence of POPC concentration in the aqueous phase, while the lipid concentration in the stock methanol remains constant. In both cases narrow monomodal size distributions of liposomes, centered between 40 and 70 nm, are obtained at low concentrations of POPC, in the stock methanol solution (

Assuntos
Álcoois/administração & dosagem , Lipossomos/química , Fosfatidilcolinas/química , Envelhecimento , Álcoois/química , Fenômenos Químicos , Físico-Química , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Lipossomos/síntese química , Tamanho da Partícula , Soluções , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA