Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Soc Archaeol ; 24(3): 221-245, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39444593

RESUMO

Many communities in southwestern Madagascar rely on a mix of foraging, fishing, farming, and herding, with cattle central to local cultures, rituals, and intergenerational wealth transfer. Today these livelihoods are critically threatened by the intensifying effects of climate change and biodiversity loss. Improved understanding of ancient community-environment dynamics can help identify pathways to livelihood sustainability. Multidisciplinary approaches have great potential to improve our understanding of human-environment interactions across spatio-temporal scales. We combine archaeological survey data, oral history interviews, and high-resolution multispectral PlanetScope imagery to explore 400 years of human-environment interaction in the Namonte Basin. Our analysis reveals that settlement and land-use led to significant changes in the region's ecology, both during periods of occupation and after settlement abandonment. Human activity over this period may have stabilized vegetative systems, whereby seasonal changes in vegetative health were reduced compared to surrounding locations. These ecological legacies may have buffered communities against unpredictable climate challenges.

2.
Sci Rep ; 14(1): 10885, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740801

RESUMO

The squash family (Cucurbitaceae) contains some of the most important crops cultivated worldwide and has played an important ecological, economic, and cultural role for millennia. In the American tropics, squashes were among the first cultivated crop species, but little is known about how their domestication unfolded. Here, we employ direct radiocarbon dating and morphological analyses of desiccated cucurbit seeds, rinds, and stems from El Gigante Rockshelter in Honduras to reconstruct human practices of selection and cultivation of Lagenaria siceraria, Cucurbita pepo, and Cucurbita moschata. Direct radiocarbon dating indicates that humans started using Lagenaria and wild Cucurbita starting ~ 10,950 calendar years before present (cal B.P.), primarily as watertight vessels and possibly as cooking and drinking containers. A rind directly dated to 11,150-10,765 cal B.P. represents the oldest known bottle gourd in the Americas. Domesticated C. moschata subsequently appeared ~ 4035 cal B.P., followed by domesticated C. pepo ~ 2190 cal B.P. associated with increasing evidence for their use as food crops. Multivariate statistical analysis of seed size and shape show that the archaeological C. pepo assemblage exhibits significant variability, representing at least three varieties: one similar to present-day zucchini, another like present-day vegetable marrow, and a native cultivar without modern analogs. Our archaeobotanical data supports the hypothesis that Indigenous cucurbit use started in the Early Holocene, and that agricultural complexity during the Late Holocene involved selective breeding that encouraged crop diversification.


Assuntos
Arqueologia , Produtos Agrícolas , Cucurbita , Humanos , Cucurbita/anatomia & histologia , Datação Radiométrica/métodos , História Antiga , Cucurbitaceae/anatomia & histologia , Domesticação , Sementes/química , Honduras
3.
PLoS One ; 18(6): e0287195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352287

RESUMO

El Gigante rockshelter in western Honduras provides a deeply stratified archaeological record of human-environment interaction spanning the entirety of the Holocene. Botanical materials are remarkably well preserved and include important tree (e.g., ciruela (Spondias), avocado (Persea americana)) and field (maize (Zea mays), beans (Phaseolus), and squash (Cucurbita)) crops. Here we provide a major update to the chronology of tree and field crop use evident in the sequence. We report 375 radiocarbon dates, a majority of which are for short-lived botanical macrofossils (e.g., maize cobs, avocado seeds, or rinds). Radiocarbon dates were used in combination with stratigraphic details to establish a Bayesian chronology for ~9,800 identified botanical samples spanning the last 11,000 years. We estimate that at least 16 discrete intervals of use occurred during this time, separated by gaps of ~100-2,000 years. The longest hiatus in rockshelter occupation was between ~6,400 and 4,400 years ago and the deposition of botanical remains peaked at ~2,000 calendar years before present (cal BP). Tree fruits and squash appeared early in the occupational sequence (~11,000 cal BP) with most other field crops appearing later in time (e.g., maize at ~4,400 cal BP; beans at ~2,200 cal BP). The early focus on tree fruits and squash is consistent with early coevolutionary partnering with humans as seed dispersers in the wake of megafaunal extinction in Mesoamerica. Tree crops predominated through much of the Holocene, and there was an overall shift to field crops after 4,000 cal BP that was largely driven by increased reliance on maize farming.


Assuntos
Anacardiaceae , Cucurbita , Persea , Humanos , Teorema de Bayes , Honduras , Agricultura , Arqueologia , Produtos Agrícolas , Zea mays
4.
Sci Rep ; 12(1): 18504, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414654

RESUMO

People could have hunted Madagascar's megafauna to extinction, particularly when introduced taxa and drought exacerbated the effects of predation. However, such explanations are difficult to test due to the scarcity of individual sites with unambiguous traces of humans, introduced taxa, and endemic megaherbivores. We excavated three coastal ponds in arid SW Madagascar and present a unique combination of traces of human activity (modified pygmy hippo bone, processed estuarine shell and fish bone, and charcoal), along with bones of extinct megafauna (giant tortoises, pygmy hippos, and elephant birds), extirpated fauna (e.g., crocodiles), and introduced vertebrates (e.g., zebu cattle). The disappearance of megafauna from the study sites at ~ 1000 years ago followed a relatively arid interval and closely coincides with increasingly frequent traces of human foraging, fire, and pastoralism. Our analyses fail to document drought-associated extirpation or multiple millennia of megafauna hunting and suggest that a late combination of hunting, forest clearance, and pastoralism drove extirpations.


Assuntos
Secas , Extinção Biológica , Animais , Humanos , Madagáscar , Vertebrados , Caça , Incêndios
5.
Proc Natl Acad Sci U S A ; 117(52): 33124-33129, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318213

RESUMO

Maize (Zea mays ssp. mays) domestication began in southwestern Mexico ∼9,000 calendar years before present (cal. BP) and humans dispersed this important grain to South America by at least 7,000 cal. BP as a partial domesticate. South America served as a secondary improvement center where the domestication syndrome became fixed and new lineages emerged in parallel with similar processes in Mesoamerica. Later, Indigenous cultivators carried a second major wave of maize southward from Mesoamerica, but it has been unclear until now whether the deeply divergent maize lineages underwent any subsequent gene flow between these regions. Here we report ancient maize genomes (2,300-1,900 cal. BP) from El Gigante rock shelter, Honduras, that are closely related to ancient and modern maize from South America. Our findings suggest that the second wave of maize brought into South America hybridized with long-established landraces from the first wave, and that some of the resulting newly admixed lineages were then reintroduced to Central America. Direct radiocarbon dates and cob morphological data from the rock shelter suggest that more productive maize varieties developed between 4,300 and 2,500 cal. BP. We hypothesize that the influx of maize from South America into Central America may have been an important source of genetic diversity as maize was becoming a staple grain in Central and Mesoamerica.


Assuntos
Evolução Molecular , Fluxo Gênico , Melhoramento Vegetal , Zea mays/genética , América Central , Genoma de Planta , Hibridização Genética , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA