RESUMO
Marine cyanobacteria such as Picosynechococcus sp. (formerly called Synechococcus sp.) PCC 7002 are promising chassis for photosynthetic production of commodity chemicals with low environmental burdens. Genetic engineering of cyanobacteria conventionally employs antibiotic resistance markers. However, limited availability of antibiotic-resistant markers is a problem for highly multigenic strain engineering. Although several markerless genetic manipulation methods have been developed for PCC 7002, they often lack versatility due to the requirement of gene disruption in the host strain. To achieve markerless transformation in Synechococcus sp. with no requirements for the host strain, this study developed a method in which temporarily introduces a mutated phenylalanyl-tRNA synthetase gene (pheS) into the genome for counter selection. Amino acid substitutions in the PheS that cause high susceptibility of PCC 7002 to the phenylalanine analog p-chlorophenylalanine were examined, and the combination of T261A and A303G was determined as the most suitable mutation. The mutated PheS-based selection was utilized for the markerless knockout of the nblA gene in PCC 7002. In addition, the genetic construct containing the lldD and lldP genes from Escherichia coli was introduced into the ldhA gene site using the counter selection strategy, resulting in a markerless recombinant strain. The repeatability of this method was demonstrated by the double markerless knockin recombinant strain, suggesting it will be a powerful tool for multigenic strain engineering of cyanobacteria.
Assuntos
Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Synechococcus/crescimento & desenvolvimento , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Engenharia Genética/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , MutaçãoRESUMO
BACKGROUND: Bacterial cellulose (BC) is a biocompatible material with unique mechanical properties, thus holding a significant industrial potential. Despite many acetic acid bacteria (AAB) being BC overproducers, cost-effective production remains a challenge. The role of pyrroloquinoline quinone (PQQ)-dependent membrane dehydrogenases (mDH) is crucial in the metabolism of AAB since it links substrate incomplete oxidation in the periplasm to energy generation. Specifically, glucose oxidation to gluconic acid substantially lowers environmental pH and hinders BC production. Conversely, ethanol supplementation is known to enhance BC yields in Komagataeibacter spp. by promoting efficient glucose utilization. RESULTS: K. sucrofermentans ATCC 700178 was engineered, knocking out the four PQQ-mDHs, to assess their impact on BC production. The strain KS003, lacking PQQ-dependent glucose dehydrogenase (PQQ-GDH), did not produce gluconic acid and exhibited a 5.77-fold increase in BC production with glucose as the sole carbon source, and a 2.26-fold increase under optimal ethanol supplementation conditions. In contrast, the strain KS004, deficient in the PQQ-dependent alcohol dehydrogenase (PQQ-ADH), showed no significant change in BC yield in the single carbon source experiment but showed a restrained benefit from ethanol supplementation. CONCLUSIONS: The results underscore the critical influence of PQQ-GDH and PQQ-ADH and clarify the effect of ethanol supplementation on BC production in K. sucrofermentans ATCC 700178. This study provides a foundation for further metabolic pathway optimization, emphasizing the importance of diauxic ethanol metabolism for high BC production.
RESUMO
Biomass is one of the renewable resources with the greatest potential, not only because of the possibility of energy recovery but also because of its content in components of interest. In this context, the regions of Galicia and Portugal have large areas of land dedicated to forestry, agriculture and livestock, and the large amount of waste generated represents a cost for the producer. The importance of these facts has aroused great interest in society to focus its interest on improving the current situation while seeking a benefit, both environmental and economic, from existing resources. That is why the integration of biotechnological processes and biorefinery for their valorization are considered key aspects in the way of producing bioproducts and bioenergy. This research article proposes a process for producing resveratrol from whey from the dairy industry and eucalyptus residues from forestry exploitation. In order to evaluate its suitability, a techno-economic analysis and an environmental assessment have been carried out using the Life Cycle Assessment (LCA) methodology. The results obtained show the potential of these scenarios both from the economic point of view, by obtaining a minimum sale price of resveratrol to ensure the viability of the process below the market average, and from the environmental point of view, being eucalyptus residues those that result in a lower contribution to the environment per unit of resveratrol produced. Future research should focus on increasing the throughput of the production process to increase its profitability and on reducing energy requirements throughout the process, as these have been the main critical points identified. In addition, following the sensitivity assessment, it has been concluded that opting for renewable energy is the most sustainable option.
Assuntos
Eucalyptus , Soro do Leite , Resveratrol , Energia Renovável , Agricultura , BiomassaRESUMO
Adulteration of dairy products, mainly through the substitution of high-quality milk for lower-quality milk, results in the production of low-value products, raising health, social, and economic concerns. As such, the development of methods to ensure dairy products' safety and quality is of great concern for governments and consumers. Although several methods have been developed for species differentiation in dairy products, their application and the establishment of reliable molecular markers for authentication purposes still need to be improved. In this chapter, we describe a low-cost, sensitive, fast, and reliable PCR-based method for mitochondrial D-loop DNA amplification for efficient detection of cattle milk in binary mixtures with sheep milk, thereby allowing the authentication of processed dairy products.
Assuntos
DNA Mitocondrial , Leite , Ovinos/genética , Animais , Bovinos , DNA Mitocondrial/genética , Mitocôndrias , Contaminação de Medicamentos , Reação em Cadeia da PolimeraseRESUMO
Megaprimer-based polymerase chain reaction (PCR) strategies allow the versatile and fast assembly and amplification of a myriad of tailor-made or random DNA sequences readily available for conventional or restriction-free (RF) cloning.In this chapter, we present a megaprimer-based PCR protocol that enables the expeditious construction of customized fusion genes ready for cloning into commercial expression plasmids. With the expanding use of protein tag technology in the most diverse application fields, this protocol remains a versatile and affordable solution for the synthesis and fusion of peptide tags/domains of interest.
Assuntos
Tecnologia , Reação em Cadeia da Polimerase , Domínios Proteicos , Clonagem MolecularRESUMO
Iron oxide and silica-based materials have emerged as attractive protein purification and immobilization matrices. His6 has been reported as an effective affinity tag for both iron oxide and silica. Here, the silica-binding tags CotB1p and Car9 were shown to work as effectively as iron oxide-binding tags. Using EGFP as a model protein, commercially available bare iron oxide (BIONs) or silicon dioxide (BSiNs) nanoparticles as low-cost purification/immobilization matrices, and non-hazardous and mild binding and elution conditions, adsorption and desorption studies were performed with lysates from Escherichia coli-producing cells to compare the performance of these dual-affinity tags. Under the conditions tested, the His6 tag stood out as the best-performing tag, followed by CotB1p. Our findings concluded the promising combination of these tags, BIONs and BSiNs for one-step purification of recombinant proteins, and two-step purification and immobilization of recombinant proteins without intermediate buffer exchange. This proof of concept work set the ground for future evaluation of these purification and immobilization strategies using other proteins with different properties, which will be of interest to expand their utility and applicability.
Assuntos
Peptídeos , Dióxido de Silício , Dióxido de Silício/química , Proteínas Recombinantes de Fusão/química , Peptídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografia de AfinidadeRESUMO
Non-Saccharomyces yeasts represent a very appealing alternative to producing beers with zero or low ethanol content. The current study explores the potential of seven non-Saccharomyces yeasts to produce low-alcohol or non-alcoholic beer, in addition to engineered/selected Saccharomyces yeasts for low-alcohol production. The yeasts were first screened for their sugar consumption and ethanol production profiles, leading to the selection of strains with absent or inefficient maltose consumption and consequently with low-to-null ethanol production. The selected yeasts were then used in larger-scale fermentations for volatile and sensory evaluation. Overall, the yeasts produced beers with ethanol concentrations below 1.2% in which fusel alcohols and esters were also detected, making them eligible to produce low-alcohol beers. Among the lager beers produced in this study, beers produced using Saccharomyces yeast demonstrated a higher acceptance by taster panelists. This study demonstrates the suitability of non-conventional yeasts for producing low-alcohol or non-alcoholic beers and opens perspectives for the development of non-conventional beers.
RESUMO
BACKGROUND: Developing new bioprocesses to produce chemicals and fuels with reduced production costs will greatly facilitate the replacement of fossil-based raw materials. In most fermentation bioprocesses, the feedstock usually represents the highest cost, which becomes the target for cost reduction. Additionally, the biorefinery concept advocates revenue growth from the production of several compounds using the same feedstock. Taken together, the production of bio commodities from low-cost gas streams containing CO, CO2, and H2, obtained from the gasification of any carbon-containing waste streams or off-gases from heavy industry (steel mills, processing plants, or refineries), embodies an opportunity for affordable and renewable chemical production. To achieve this, by studying non-model autotrophic acetogens, current limitations concerning low growth rates, toxicity by gas streams, and low productivity may be overcome. The Acetobacterium wieringae strain JM is a novel autotrophic acetogen that is capable of producing acetate and ethanol. It exhibits faster growth rates on various gaseous compounds, including carbon monoxide, compared to other Acetobacterium species, making it potentially useful for industrial applications. The species A. wieringae has not been genetically modified, therefore developing a genetic engineering method is important for expanding its product portfolio from gas fermentation and overall improving the characteristics of this acetogen for industrial demands. RESULTS: This work reports the development and optimization of an electrotransformation protocol for A. wieringae strain JM, which can also be used in A. wieringae DSM 1911, and A. woodii DSM 1030. We also show the functionality of the thiamphenicol resistance marker, catP, and the functionality of the origins of replication pBP1, pCB102, pCD6, and pIM13 in all tested Acetobacterium strains, with transformation efficiencies of up to 2.0 × 103 CFU/µgDNA. Key factors affecting electrotransformation efficiency include OD600 of cell harvesting, pH of resuspension buffer, the field strength of the electric pulse, and plasmid amount. Using this method, the acetone production operon from Clostridium acetobutylicum was efficiently introduced in all tested Acetobacterium spp., leading to non-native biochemical acetone production via plasmid-based expression. CONCLUSIONS: A. wieringae can be electrotransformed at high efficiency using different plasmids with different replication origins. The electrotransformation procedure and tools reported here unlock the genetic and metabolic manipulation of the biotechnologically relevant A. wieringae strains. For the first time, non-native acetone production is shown in A. wieringae.
RESUMO
Potato peel waste (PPW) is a starchy by-product generated in great amounts during the industrial processing of potatoes. It can be used as a low cost alternative, and renewable feedstock for the production of second generation bioethanol. In order to intensify this process, Saccharomyces cerevisiae Ethanol Red®, a robust and thermotolerant yeast strain, was selected and two experimental designs and response surfaces assessment were conducted to enable very high gravity fermentations (VHGF) using PPW as feedstock. The first one focused on the optimization of the liquefaction and enzymatic hydrolysis stages, enabling a maximum ethanol concentration of 116.5 g/L and a yield of 80.4 % at 72 h of fermentation; whereas, the second one, focus on the optimization of the pre-saccharification and fermentation stages, which further increased process productivity, leading to a maximum ethanol concentration of 108.8 g/L and a yield of 75.1 % after 54 h of fermentation. These results allowed the definition of an intensified pre-saccharification and simultaneous saccharification and fermentation (PSSF) process for ethanol production from PPW, resorting to short liquefaction and pre-saccharification times, 2 h and 10 h respectively, at an enzyme loading of 80 U/g PPW of Viscozyme and 5 UE/g PPW of SAN Super and a higher fermentation temperature of 34 °C due to the use of a thermotolerant yeast. Overall, with these conditions and solely from PPW without any supplementation, the outlined PSSF process allowed reaching a high ethanol concentration and yield (104.1 g/L and 71.9 %, respectively) standing at high productivities with only 54 h of fermentation.
Assuntos
Biocombustíveis , Solanum tuberosum , Saccharomyces cerevisiae , Fermentação , EtanolRESUMO
The wine industry produces significant amounts of by-products and residues that are not properly managed, posing an environmental problem. Grape must surplus, vine shoots, and wine lees have the potential to be used as renewable resources for the production of energy and chemicals. Metabolic engineering efforts have established Saccharomyces cerevisiae as an efficient microbial cell factory for biorefineries. Current biorefineries designed for producing multiple products often rely on just one feedstock, but the bioeconomy would clearly benefit if these biorefineries could efficiently convert multiple feedstocks. Moreover, to reduce the environmental impact of fossil fuel consumption and maximize production economics, a biorefinery should be capable to supplement the manufacture of biofuel with the production of high-value products. This study proposes an integrated approach for the valorization of diverse wastes resulting from winemaking processes through the biosynthesis of xylitol and ethanol. Using genetically modified S. cerevisiae strains, the xylose-rich hemicellulosic fraction of hydrothermally pretreated vine shoots was converted into xylitol, and the cellulosic fraction was used to produce bioethanol. In addition, grape must, enriched in sugars, was efficiently used as a low-cost source for yeast propagation. The production of xylitol was optimized, in a Simultaneous Saccharification and Fermentation process configuration, by adjusting the inoculum size and enzyme loading. Furthermore, a yeast strain displaying cellulases in the cell surface was applied for the production of bioethanol from the glucan-rich cellulosic. With the addition of grape must and/or wine lees, high ethanol concentrations were reached, which are crucial for the economic feasibility of distillation. This integrated multi-feedstock valorization provides a synergistic alternative for converting a range of winery wastes and by-products into biofuel and an added-value chemical while decreasing waste released to the environment.
Assuntos
Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Xilitol/metabolismo , Xilose/metabolismo , Fermentação , Etanol/metabolismoRESUMO
Malonyl-CoA is an energy-rich molecule formed by the ATP-dependent carboxylation of acetyl coenzyme A catalyzed by acetyl-CoA carboxylase. This molecule is an important precursor for many biotechnologically interesting compounds such as flavonoids, polyketides, and fatty acids. The yeast Saccharomyces cerevisiae remains one of the preferred cell factories, but has a limited capacity to produce malonyl-CoA compared to oleaginous organisms. We developed a new S. cerevisiae strain with a conditional allele of ACC1, the essential acetyl-CoA carboxylase (ACC) gene, as a tool to test heterologous genes for complementation. Yarrowia lipolytica is an oleaginous yeast with a higher capacity for lipid production than S. cerevisiae, possibly due to a higher capacity to produce malonyl-CoA. Measuring relative intracellular malonyl-CoA levels with an in-vivo biosensor confirmed that expression of Y. lipolytica ACC in S. cerevisiae leads to a higher accumulation of malonyl-CoA compared with overexpression of the native gene from an otherwise identical vector. The higher accumulation was generally accompanied by a decreased growth rate. Concomitant expression of both the homologous and heterologous ACC1 genes eliminated the growth defect, with a marginal reduction of malonyl-CoA accumulation.
RESUMO
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Assuntos
Etanol , Xilitol , Biomassa , Etanol/metabolismo , Fermentação , Kluyveromyces , Ácido Láctico , Lignina , Açúcares , Xilitol/metabolismoRESUMO
Resveratrol is an antioxidant with applications in the food and cosmetic industries. Its biosynthesis can side the hindrances of its extraction from plants. The dairy industry generates tonnes of lactose-rich wastes, which can be a carbon source. Saccharomyces cerevisiae is an industrial workhorse for biotechnological processes, being unable to naturally metabolise lactose. Here, an S. cerevisiae strain was engineered for de novo production of resveratrol from lactose. A resveratrol titre of 210 mg/L from 100 g/L of lactose in synthetic media was achieved. Process optimization increased by 35% the production by a two-stage process, one favouring ethanol production and a subsequent one with stronger agitation favouring ethanol and lactose consumption with conversion into resveratrol. Resveratrol production from cheese whey was further attained. To the best knowledge of the authors, this is the first report on resveratrol production from lactose, relevant in dairy wastes, establishing grounds for future resveratrol-producing lactose-based processes.
Assuntos
Queijo , Lactose , Queijo/análise , Etanol/metabolismo , Fermentação , Lactose/metabolismo , Resveratrol/metabolismo , Saccharomyces cerevisiae/metabolismo , Soro do Leite/metabolismoRESUMO
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Anaerobiose , Fermentação , Regulação Fúngica da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , TranscriptomaRESUMO
Europe is considered the largest producer of wine worldwide, showing a high market potential. Several wastes are generated at the different stages of the wine production process, namely, vine pruning, stalks, and grape marc. Typically, these residues are not used and are commonly discarded. Portugal generates annually approximately 178 thousand metric tons of wine production waste. In this context, the interest in redirecting the use of these residues has increased due to overproduction, great availability, and low costs. The utilization of these lignocellulosic biomasses derived from the wine industry would economically benefit the producers, while mitigating impacts on the environment. These by-products can be submitted to pre-treatments (physical, chemical, and biological) for the separation of different compounds with high industrial interest, reducing the waste of agro-industrial activities and increasing industrial profitability. Particularly, vine-pruning residue, besides being a source of sugar, has high nutritional value and may serve as a source of phenolic compounds. These compounds can be obtained by bioconversion, following a concept of biorefinery. In this framework, the current routes of the valorisation of the pruning residues will be addressed and put into a circular economy context.
RESUMO
Background: The potential applications of protein-engineered functional materials are so wide and exciting that the interest in these eco-friendly advanced materials will further expand in the future. Tag-mediated protein purification/immobilization technologies have emerged as green and cost-effective approaches for the fabrication of such materials. Strategies that combine the purification and immobilization of recombinant proteins/peptides onto/into natural, synthetic or hybrid materials in a single-step are arising and attracting increasing interest. Aim of Review: This review highlights the most significant advances of the last 5 years within the scope of tag-mediated protein purification/immobilization and elucidates their contributions for the development of efficient single-step purification and immobilization strategies. Recent progresses in the field of protein-engineered materials created using innovative protein-tag combinations and future opportunities created by these new technologies are also summarized and identified herein. Key Scientific Concepts of Review: Protein purification/immobilization tags present a remarkable ability to establish specific non-covalent/covalent interactions between solid materials and biological elements, which prompted the creation of tailor-made and advanced functional materials, and of next-generation hybrid materials. Affinity tags can bind to a wide range of materials (of synthetic, natural or hybrid nature), being most suitable for protein purification. Covalently binding tags are most suitable for long-term protein immobilization, but can only bind naturally to protein-based materials. Hybrid affinity-covalently binding tags have allowed efficient one-step purification and immobilization of proteins onto different materials, as well as the development of innovative protein-engineered materials. Self-aggregating tags have been particularly useful in combination with other tags for generating protein-engineered materials with self-assembling, flexible and/or responsive properties. While these tags have been mainly explored for independent protein purification, immobilization or functionalization purposes, efficient strategies that combine tag-mediated purification and immobilization/functionalization in a single-step will be essential to guarantee the sustainable manufacturing of advanced protein-engineered materials.
Assuntos
Peptídeos , Cromatografia de Afinidade , Peptídeos/química , Proteínas Recombinantes/químicaRESUMO
Yeast-based bioethanol production from lignocellulosic hydrolysates (LH) is an attractive and sustainable alternative for biofuel production. However, the presence of acetic acid (AA) in LH is still a major problem. Indeed, above certain concentrations, AA inhibits yeast fermentation and triggers a regulated cell death (RCD) process mediated by the mitochondria and vacuole. Understanding the mechanisms involved in AA-induced RCD (AA-RCD) may thus help select robust fermentative yeast strains, providing novel insights to improve lignocellulosic ethanol (LE) production. Herein, we hypothesized that zinc vacuolar transporters are involved in vacuole-mediated AA-RCD, since zinc enhances ethanol production and zinc-dependent catalase and superoxide dismutase protect from AA-RCD. In this work, zinc limitation sensitized wild-type cells to AA-RCD, while zinc supplementation resulted in a small protective effect. Cells lacking the vacuolar zinc transporter Zrt3 were highly resistant to AA-RCD, exhibiting reduced vacuolar dysfunction. Moreover, zrt3Δ cells displayed higher ethanol productivity than their wild-type counterparts, both when cultivated in rich medium with AA (0.29 g L-1 h-1 versus 0.11 g L-1 h-1) and in an LH (0.73 g L-1 h-1 versus 0.55 g L-1 h-1). Overall, the deletion of ZRT3 emerges as a promising strategy to increase strain robustness in LE industrial production.
RESUMO
During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.
Assuntos
RNA Polimerases Dirigidas por DNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais , Regiões Promotoras Genéticas/genéticaRESUMO
The establishment of lignocellulosic biorefineries is dependent on microorganisms being able to cope with the stressful conditions resulting from the release of inhibitory compounds during biomass processing. The yeast Kluyveromyces marxianus has been explored as an alternative microbial factory due to its thermotolerance and ability to natively metabolize xylose. The lignocellulose-derived inhibitors furfural and 5-hydroxymethylfurfural (HMF) are considered promising building-block platforms that can be converted into a wide variety of high-value derivatives. Here, several K. marxianus strains, isolated from cocoa fermentation, were evaluated for xylose consumption and tolerance towards acetic acid, furfural, and HMF. The potential of this yeast to reduce furfural and HMF at high inhibitory loads was disclosed and characterized. Our results associated HMF reduction with NADPH while furfural-reducing activity was higher with NADH. In addition, furans' inhibitory effect was higher when combined with xylose consumption. The furan derivatives produced by K. marxianus in different conditions were identified. Furthermore, one selected isolate was efficiently used as a whole-cell biocatalyst to convert furfural and HMF into their derivatives, furfuryl alcohol and 2,5-bis(hydroxymethyl)furan (BHMF), with high yields and productivities. These results validate K. marxianus as a promising microbial platform in lignocellulosic biorefineries.
RESUMO
Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5-11.8 µM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53-/-; GI50 of 25.0 ± 3.0 µM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 µM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.