Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201328

RESUMO

Non-small cell lung cancer (NSCLC) leads as a primary cause of cancer-related premature mortality in Western populations. This study leverages cutting-edge gene-expression-profiling technologies to perform an in-depth molecular characterization of NSCLC specimens, with the objective of uncovering tumor-specific genomic alterations. By employing DNA microarray analysis, our research aims to refine the classification of NSCLC for early detection, guide molecular-targeted treatment approaches, enhance prognostication, and broaden the scientific understanding of the disease's biology. We identified widespread genomic abnormalities in our samples, including the recurrent loss of chromosomal regions 3p, 5q, 13q, and 21q and the gain of 12p. Furthermore, utilizing Metascape for bioinformatic analysis revealed critical biological pathways disrupted in NSCLC, offering promising leads for novel therapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Idoso , Cromossomos Humanos Par 5/genética , Gradação de Tumores , Cromossomos Humanos Par 13/genética , Perfilação da Expressão Gênica/métodos
2.
Genes (Basel) ; 13(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140831

RESUMO

The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson's disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.


Assuntos
Condrócitos , Osteoartrite , Tecido Adiposo/metabolismo , Animais , Condrócitos/metabolismo , Meios de Cultura/metabolismo , Cães , Marcadores Genéticos , Metaloproteinase 12 da Matriz/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , RNA/metabolismo , Células-Tronco
3.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206369

RESUMO

Next-generation sequencing (RNAseq) analysis of gene expression changes during the long-term in vitro culture and osteogenic differentiation of ASCs remains to be important, as the analysis provides important clues toward employing stem cells as a therapeutic intervention. In this study, the cells were isolated from adipose tissue obtained during routine surgical procedures and subjected to 14-day in vitro culture and differentiation. The mRNA transcript levels were evaluated using the Illumina platform, resulting in the detection of 19,856 gene transcripts. The most differentially expressed genes (fold change >|2|, adjusted p value < 0.05), between day 1, day 14 and differentiated cell cultures were extracted and subjected to bioinformatical analysis based on the R programming language. The results of this study provide molecular insight into the processes that occur during long-term in vitro culture and osteogenic differentiation of ASCs, allowing the re-evaluation of the roles of some genes in MSC progression towards a range of lineages. The results improve the knowledge of the molecular mechanisms associated with long-term in vitro culture and differentiation of ASCs, as well as providing a point of reference for potential in vivo and clinical studies regarding these cells' application in regenerative medicine.


Assuntos
Tecido Adiposo/citologia , Osteoblastos/metabolismo , Osteogênese/genética , Células-Tronco/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Cães , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Análise de Sequência de RNA , Células-Tronco/fisiologia
4.
Cells ; 10(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198768

RESUMO

The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte's proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.


Assuntos
Células do Cúmulo/metabolismo , Neovascularização Fisiológica , Células-Tronco/metabolismo , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Insuficiência Ovariana Primária/metabolismo
5.
Nutrients ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466241

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is a global health challenge with substantial adverse effects on the world economy. It is beyond any doubt that it is, again, a call-to-action to minimize the risk of future zoonoses caused by emerging human pathogens. The primary response to contain zoonotic diseases is to call for more strict regulations on wildlife trade and hunting. This is because the origins of coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), as well as other viral pathogens (e.g., Ebola, HIV) are traceable to wild animals. Although COVID-19 is not related to livestock animals, the pandemic increased general attention given to zoonotic viral infections-the risk of which can also be associated with livestock. Therefore, this paper discusses the potential transformation of industrial livestock farming and the production of animal products, particularly meat, to decrease the risks for transmission of novel human pathogens. Plant-based diets have a number of advantages, but it is unrealistic to consider them as the only solution offered to the problem. Therefore, a search for alternative protein sources in insect-based foods and cultured meat, important technologies enabling safer meat production. Although both of these strategies offer a number of potential advantages, they are also subject to the number of challenges that are discussed in this paper. Importantly, insect-based foods and cultured meat can provide additional benefits in the context of ecological footprint, an aspect important in light of predicted climate changes. Furthermore, cultured meat can be regarded as ethically superior and supports better food security. There is a need to further support the implementation and expansion of all three approaches discussed in this paper, plant-based diets, insect-based foods, and cultured meat, to decrease the epidemiological risks and ensure a sustainable future. Furthermore, cultured meat also offers a number of additional benefits in the context of environmental impact, ethical issues, and food security.


Assuntos
COVID-19/epidemiologia , Proteínas Alimentares/provisão & distribuição , Abastecimento de Alimentos/métodos , Animais , COVID-19/etiologia , COVID-19/prevenção & controle , Insetos Comestíveis , Alimentos , Humanos , Carne , Plantas Comestíveis , Zoonoses/etiologia , Zoonoses/prevenção & controle
6.
Genes (Basel) ; 11(8)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796761

RESUMO

Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Imunoterapia , Neoplasias/terapia , Animais , Ensaios Clínicos como Assunto , Doença , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunoterapia Adotiva , Neoplasias/etiologia , Medicina de Precisão/métodos
7.
Cells ; 9(8)2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726947

RESUMO

Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.


Assuntos
Adipócitos/metabolismo , Adipócitos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Modelos Animais
8.
J Clin Med ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604796

RESUMO

Granulosa cells (GCs) have many functions and are fundamental for both folliculogenesis and oogenesis, releasing hormones and communicating directly with the oocyte. Long-term in vitro cultures of GCs show significant stem-like characteristics. In the current study, RNA of human ovarian granulosa cells was collected at 1, 7, 15 and 30 days of long-term in vitro culture. Understanding the process of differentiation of GCs towards different cell lineages, as well as the molecular pathways underlying these mechanisms, is fundamental to revealing other possible stemness markers of this type of cell. Identifying new markers of GC plasticity may help to understand the aetiology and recurrence of a wide variety of diseases and health conditions and reveal possible clinical applications of the ovarian tissue cells, affecting not only the reproductive ability but also sex hormone production. Granulosa cells were the subject of this study, as they are readily available as remnant material leftover after in vitro fertilisation procedures and exhibit significant stem-like characteristics in culture. The change in gene expression was investigated through a range of molecular and bioinformatic analyses. Expression microarrays were used, allowing the identification of groups of genes typical of specific cellular pathways. This candidate gene study focused on ontological groups associated with muscle cell morphogenesis, structure, development and differentiation, namely, "muscle cell development", "muscle cell differentiation", "muscle contraction", "muscle organ development", "muscle organ morphogenesis", "muscle structure development", "muscle system process" and "muscle tissue development". The results showed that the 10 most upregulated genes were keratin 19, oxytocin receptor, connective tissue growth factor, nexilin, myosin light chain kinase, cysteine and glycine-rich protein 3, caveolin 1, actin, activating transcription factor 3 and tropomyosin, while the 10 most downregulated consisted of epiregulin, prostaglandin-endoperoxide synthase 2, transforming growth factor, interleukin, collagen, 5-hydroxytryptmine, interleukin 4, phosphodiesterase, wingless-type MMTV integration site family and SRY-box 9. Moreover, ultrastructural observations showing heterogeneity of granulosa cell population are presented in the study. At least two morphologically different subpopulations were identified: large, light coloured and small, darker cells. The expression of genes belonging to the mentioned ontological groups suggest the potential ability of GCs to differentiate and proliferate toward muscle lineage, showing possible application in muscle regeneration and the treatment of different diseases.

9.
J Clin Med ; 9(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503238

RESUMO

The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers' underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.

10.
Cells ; 9(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455542

RESUMO

In the ovarian follicle, maturation of the oocyte increases in the presence of somatic cells called cumulus cells (CCs). These cells form a direct barrier between the oocyte and external environment. Thanks to bidirectional communication, they have a direct impact on the oocyte, its quality and development potential. Understanding the genetic profile of CCs appears to be important in elucidating the physiology of oocytes. Long-term in vitro culture of CCs collected from patients undergoing controlled ovarian stimulation during in vitro fertilization procedure was conducted. Using microarray expression analysis, transcript levels were assessed on day 1, 7, 15, and 30 of culture. Apoptosis and aging of CCs strictly influence oocyte quality and subsequently the outcome of assisted reproductive technologies (ART). Thus, particular attention was paid to the analysis of genes involved in programmed cell death, aging, and apoptosis. Due to the detailed level of expression analysis of each of the 133 analyzed genes, three groups were selected: first with significantly decreased expression during the culture; second with the statistically lowest increase in expression; and third with the highest significant increase in expression. COL3A1, SFRP4, CTGF, HTR2B, VCAM1, TNFRSF11B genes, belonging to the third group, were identified as potential carriers of information on oocyte quality.


Assuntos
Técnicas de Cultura de Células/métodos , Senescência Celular/genética , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Perfilação da Expressão Gênica , Adulto , Biomarcadores/metabolismo , Morte Celular/genética , Forma Celular/genética , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Análise de Componente Principal , Reprodutibilidade dos Testes , Fatores de Tempo
11.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471255

RESUMO

Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia
12.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326172

RESUMO

The epigenome denotes all the information related to gene expression that is not contained in the DNA sequence but rather results from chemical changes to histones and DNA. Epigenetic modifications act in a cooperative way towards the regulation of gene expression, working at the transcriptional or post-transcriptional level, and play a key role in the determination of phenotypic variations in cells containing the same genotype. Epigenetic modifications are important considerations in relation to anti-cancer therapy and regenerative/reconstructive medicine. Moreover, a range of clinical trials have been performed, exploiting the potential of epigenetics in stem cell engineering towards application in disease treatments and diagnostics. Epigenetic studies will most likely be the basis of future cancer therapies, as epigenetic modifications play major roles in tumour formation, malignancy and metastasis. In fact, a large number of currently designed or tested clinical approaches, based on compounds regulating epigenetic pathways in various types of tumours, employ these mechanisms in stem cell bioengineering.

13.
J Clin Med ; 9(4)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290584

RESUMO

Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton's jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton's jelly, is a promising source of mesenchymal stem cells.

14.
J Clin Med ; 9(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947922

RESUMO

The deterioration of the human skeleton's capacity for self-renewal occurs naturally with age. Osteoporosis affects millions worldwide, with current treatments including pharmaceutical agents that target bone formation and/or resorption. Nevertheless, these clinical approaches often result in long-term side effects, with better alternatives being constantly researched. Mesenchymal stem cells (MSCs) derived from bone marrow and adipose tissue are known to hold therapeutic value for the treatment of a variety of bone diseases. The following review summarizes the latest studies and clinical trials related to the use of MSCs, both individually and combined with other methods, in the treatment of a variety of conditions related to skeletal health. For example, some of the most recent works noted the advantage of bone grafts based on biomimetic scaffolds combined with MSC and growth factor delivery, with a greatly increased regeneration rate and minimized side effects for patients. This review also highlights the continuing research into the mechanisms underlying bone homeostasis, including the key transcription factors and signalling pathways responsible for regulating the differentiation of osteoblast lineage. Paracrine factors and specific miRNAs are also believed to play a part in MSC differentiation. Furthering the understanding of the specific mechanisms of cellular signalling in skeletal remodelling is key to incorporating new and effective treatment methods for bone disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA