Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Robot ; 9(3): 509-517, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097537

RESUMO

Conventional grippers fall behind their human counterparts as they do not have integrated sensing capabilities. Piezoresistive and capacitive sensors are popular choices because of their design and sensitivity, but they cannot measure pressure and slip simultaneously. It is imperative to measure slip and pressure concurrently. We demonstrate a dual slip-pressure sensor based on a thermal approach. The sensor comprises two concentric microfabricated heaters maintained at constant temperature. An elastic dome, with embedded liquid metal droplets, is placed on top of concentric heaters. Heat transfer between sensor and the object in contact occurs through the elastic dome. This heat transfer causes changes in the power absorbed by the sensor to maintain its temperature and allows for measurement of pressure while identifying slip events. Liquid metal droplets contribute to enhanced thermal conductivity (0.37 W/m-K) and reduced specific heat (0.86 kJ/kg-K) of the polymer without compromising on mechanical properties (Young's modulus-0.5 MPa). For pressure monitoring, sensor measures change in power ratio against increase in applied force, demonstrating a highly linear performance, with a high sensitivity of 0.0356 N-1 (pressure only) and 0.0189 N-1 (slip with simultaneous pressure applied). The sensor discriminates between different contact types with a 96% accuracy. Response time of the sensor (60-75 ms) matches the measured response time in human skin. The sensor does not get affected by mechanical vibrations paving way for easy integration with robotic manipulators and prosthetics.


Assuntos
Nanocompostos , Procedimentos Cirúrgicos Robóticos , Robótica , Desenho de Equipamento , Humanos , Polímeros
2.
PLoS One ; 13(11): e0207145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30444872

RESUMO

Facial somatosensory feedback is critical for breastfeeding in the first days of life. However, its development has never been investigated in humans. Here we develop a new interface to measure facial somatosensation in newborn infants. The novel system allows to measure neuronal responses to touching the face of the subject by synchronously recording scalp electroencephalography (EEG) and the force applied by the experimenter. This is based on a dedicated force transducer that can be worn on the finger underneath a clinical nitrile glove and linked to a commercial EEG acquisition system. The calibrated device measures the pressure applied by the investigator when tapping the skin concurrently with the resulting brain response. With this system, we were able to demonstrate that taps of 192 mN (mean) reliably elicited facial somatosensory responses in 7 pre-term infants. These responses had a time course similar to those following limbs stimulation, but more lateral topographical distribution consistent with body representations in primary somatosensory areas. The method introduced can therefore be used to reliably measure facial somatosensory responses in vulnerable infants.


Assuntos
Recém-Nascido Prematuro/fisiologia , Aleitamento Materno , Eletroencefalografia , Desenho de Equipamento , Face , Retroalimentação Sensorial/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Humanos , Recém-Nascido , Masculino , Córtex Somatossensorial/fisiologia , Tato , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA