Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nucleic Acids Res ; 47(14): 7618-7632, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31127278

RESUMO

Spinal Muscular Atrophy results from loss-of-function mutations in SMN1 but correcting aberrant splicing of SMN2 offers hope of a cure. However, current splice therapy requires repeated infusions and is expensive. We previously rescued SMA mice by promoting the inclusion of a defective exon in SMN2 with germline expression of Exon-Specific U1 snRNAs (ExspeU1). Here we tested viral delivery of SMN2 ExspeU1s encoded by adeno-associated virus AAV9. Strikingly the virus increased SMN2 exon 7 inclusion and SMN protein levels and rescued the phenotype of mild and severe SMA mice. In the severe mouse, the treatment improved the neuromuscular function and increased the life span from 10 to 219 days. ExspeU1 expression persisted for 1 month and was effective at around one five-hundredth of the concentration of the endogenous U1snRNA. RNA-seq analysis revealed our potential drug rescues aberrant SMA expression and splicing profiles, which are mostly related to DNA damage, cell-cycle control and acute phase response. Vastly overexpressing ExspeU1 more than 100-fold above the therapeutic level in human cells did not significantly alter global gene expression or splicing. These results indicate that AAV-mediated delivery of a modified U1snRNP particle may be a novel therapeutic option against SMA.


Assuntos
Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Distrofia Muscular Animal/terapia , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Éxons/genética , Células HEK293 , Humanos , Camundongos Knockout , Atrofia Muscular Espinal/genética , Distrofia Muscular Animal/genética , Mutação , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
2.
Hum Mol Genet ; 27(14): 2466-2476, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29701768

RESUMO

Familial dysautonomia (FD) is a rare genetic disease with no treatment, caused by an intronic point mutation (c.2204+6T>C) that negatively affects the definition of exon 20 in the elongator complex protein 1 gene (ELP1 also known as IKBKAP). This substitution modifies the 5' splice site and, in combination with regulatory splicing factors, induces different levels of exon 20 skipping, in various tissues. Here, we evaluated the therapeutic potential of a novel class of U1 snRNA molecules, exon-specific U1s (ExSpeU1s), in correcting ELP1 exon 20 recognition. Lentivirus-mediated expression of ELP1-ExSpeU1 in FD fibroblasts improved ELP1 splicing and protein levels. We next focused on a transgenic mouse model that recapitulates the same tissue-specific mis-splicing seen in FD patients. Intraperitoneal delivery of ELP1-ExSpeU1s-adeno-associated virus particles successfully increased the production of full-length human ELP1 transcript and protein. This splice-switching class of molecules is the first to specifically correct the ELP1 exon 20 splicing defect. Our data provide proof of principle of ExSpeU1s-adeno-associated virus particles as a novel therapeutic strategy for FD.


Assuntos
Proteínas de Transporte/genética , Disautonomia Familiar/terapia , Terapia Genética , RNA Nuclear Pequeno/genética , Processamento Alternativo/genética , Animais , Proteínas de Transporte/uso terapêutico , Dependovirus/genética , Modelos Animais de Doenças , Disautonomia Familiar/genética , Disautonomia Familiar/fisiopatologia , Éxons/genética , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons/genética , Camundongos , Camundongos Transgênicos , Splicing de RNA/genética , RNA Nuclear Pequeno/uso terapêutico , Fatores de Elongação da Transcrição
3.
Haematologica ; 103(2): 344-350, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29170251

RESUMO

Dissection of pleiotropic effects of missense mutations, rarely investigated in inherited diseases, is fundamental to understanding genotype-phenotype relationships. Missense mutations might impair mRNA processing in addition to protein properties. As a model for hemophilia A, we investigated the highly prevalent F8 c.6046c>t/p.R2016W (exon 19) mutation. In expression studies exploiting lentiviral vectors, we demonstrated that the amino acid change impairs both Factor VIII (FVIII) secretion (antigen 11.0±0.4% of wild-type) and activity (6.0±2.9%). Investigations in patients' ectopic F8 mRNA and with minigenes showed that the corresponding nucleotide change also decreases correct splicing to 70±5%, which is predicted to lower further FVIII activity (4.2±2%), consistently with patients' levels (<1-5%). Masking the mutated exon 19 region by antisense U7snRNA supported the presence of a splicing regulatory element, potentially affected by several missense mutations causing hemophilia A. Among these, the c.6037g>a (p.G2013R) reduced exon inclusion to 41±3% and the c.6053a>g (p.E2018G) to 28±2%, similarly to a variant affecting the 5' splice site (c.6113a>g, p.N2038S, 26±2%), which displayed normal protein features upon recombinant expression. The p.G2013R reduced both antigen (7.0±0.9%) and activity (8.4±0.8%), while the p.E2018G produced a dysfunctional molecule (antigen: 69.0±18.1%; activity: 19.4±2.3%). In conclusion, differentially altered mRNA and protein patterns produce a gradient of residual activity, and clarify genotype-phenotype relationships. Data detail pathogenic mechanisms that, only in combination, account for moderate/severe disease forms, which in turn determine the mutation profile. Taken together we provide a clear example of interplay between mRNA and protein mechanisms of disease that operate in shaping many other inherited disorders.


Assuntos
Fator VIII/genética , Hemofilia A/genética , Mutação de Sentido Incorreto , Análise por Conglomerados , Fator VIII/metabolismo , Estudos de Associação Genética , Células HEK293 , Hemofilia A/etiologia , Células Hep G2 , Humanos , Fenótipo , Biossíntese de Proteínas , Splicing de RNA , RNA Mensageiro/genética
4.
Hum Mutat ; 36(5): 504-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25665175

RESUMO

The c.891C>T synonymous transition in SPINK5 induces exon 11 (E11) skipping and causes Netherton syndrome (NS). Using a specific RNA-protein interaction assay followed by mass spectrometry analysis along with silencing and overexpression of splicing factors, we showed that this mutation affects an exonic bifunctional splicing regulatory element composed by two partially overlapping silencer and enhancer sequences, recognized by hnRNPA1 and Tra2ß splicing factors, respectively. The C-to-T substitution concomitantly increases hnRNPA1 and weakens Tra2ß-binding sites, leading to pathological E11 skipping. In hybrid minigenes, exon-specific U1 small nuclear RNAs (ExSpe U1s) that target by complementarity intronic sequences downstream of the donor splice site rescued the E11 skipping defect caused by the c.891C>T mutation. ExSpe U1 lentiviral-mediated transduction of primary NS keratinocytes from a patient bearing the mutation recovered the correct full-length SPINK5 mRNA and the corresponding functional lympho-epithelial Kazal-type related inhibitor protein in a dose-dependent manner. This study documents the reliability of a mutation-specific, ExSpe U1-based, splicing therapy for a relatively large subset of European NS patients. Usage of ExSpe U1 may represent a general approach for correction of splicing defects affecting skin disease genes.


Assuntos
Processamento Alternativo , Éxons , Mutação , Proteínas Secretadas Inibidoras de Proteinases/genética , RNA Nuclear Pequeno/genética , Sequências Reguladoras de Ácido Nucleico , Linhagem Celular , Expressão Gênica , Inativação Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Queratinócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Síndrome de Netherton/genética , Síndrome de Netherton/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inibidor de Serinopeptidase do Tipo Kazal 5 , Fatores de Processamento de Serina-Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA