RESUMO
Zika virus (ZIKV) is a neurotropic flavivirus recently linked to congenital ZIKV syndrome in children and encephalitis and Guillain-Barré syndrome in adults. Neurotropic viruses often use axons to traffic to neuronal or glial cell somas where they either remain latent or replicate and proceed to infect new cells. Consequently, it has been suggested that axon degeneration could represent an evolutionarily conserved mechanism to limit viral spread. Whilst it is not known if ZIKV transits in axons, we previously reported that ZIKV infection of glial cells in a murine spinal cord-derived cell culture model of the CNS is associated with a profound loss of neuronal cell processes. This, despite that postmitotic neurons are relatively refractory to infection and death. Here, we tested the hypothesis that ZIKV-associated degeneration of neuronal processes is dependent on activation of Sterile alpha and armadillo motif-containing protein 1 (SARM1), an NADase that acts as a central executioner in a conserved axon degeneration pathway. To test this, we infected wild type and Sarm1 homozygous or heterozygous null cell cultures with ZIKV and examined NAD+ levels as well as the survival of neurons and their processes. Unexpectedly, ZIKV infection led to a rapid SARM1-independent reduction in NAD+. Nonetheless, the subsequent profound loss of neuronal cell processes was SARM1-dependent and was preceded by early changes in the appearance of ß-tubulin III staining. Together, these data identify a role for SARM1 in the pathogenesis of ZIKV infection, which may reflect SARM1's conserved prodegenerative function, independent of its NADase activity.
RESUMO
Several viruses, including human cytomegalovirus (HCMV), are thought to replicate in the placenta. However, there is little understanding of the molecular mechanisms involved in HCMV replication in this tissue. We investigated replication of HCMV in the extravillous trophoblast cell line SGHPL-4, a commonly used model of HCMV replication in the placenta. We found limited HCMV protein expression and virus replication in SGHPL-4 cells. This was associated with a lack of trophoblast progenitor cell protein markers in SGHPL-4 cells, suggesting a relationship between trophoblast differentiation and limited HCMV replication. We proposed that limited HCMV replication in trophoblast cells is advantageous to vertical transmission of HCMV, as there is a greater opportunity for vertical transmission when the placenta is intact and functional. Furthermore, when we investigated the replication of other vertically transmitted viruses in SGHPL-4 cells we found some limitation to replication of Zika virus, but not herpes simplex virus. Thus, limited replication of some, but not all, vertically transmitted viruses may be a feature of trophoblast cells.
Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Trofoblastos/virologia , Replicação Viral , Linhagem Celular , Citomegalovirus/genética , Infecções por Citomegalovirus/transmissão , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Placenta/virologia , GravidezRESUMO
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Assuntos
Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina/metabolismo , Zika virus/metabolismo , Células A549 , Aedes/virologia , Animais , Capsídeo/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Mapas de Interação de Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína com Valosina/genética , Replicação Viral/fisiologia , Zika virus/genética , Infecção por Zika virus/patologiaRESUMO
Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.
Assuntos
Infecção por Zika virus , Zika virus , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Neurônios , Oligodendroglia , Gravidez , Infecção por Zika virus/complicaçõesRESUMO
The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.
Assuntos
Vacinas contra COVID-19 , COVID-19/diagnóstico , COVID-19/virologia , Genética Reversa , SARS-CoV-2/genética , Células A549 , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Chlorocebus aethiops , Códon , Humanos , Hidrazonas/farmacologia , Camundongos , Morfolinas/farmacologia , Fases de Leitura Aberta , Plasmídeos/genética , Pirimidinas/farmacologia , Serina Endopeptidases/metabolismo , Células Vero , Proteínas Virais/metabolismoRESUMO
Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination-which is critical for saltatory conduction and neuronal function-has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.
Assuntos
Axônios/virologia , Doenças Desmielinizantes/etiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Biomarcadores , Traumatismos dos Nervos Cranianos/etiologia , Traumatismos dos Nervos Cranianos/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Ratos , TranscriptomaRESUMO
The increasing global incidence of mosquito-borne infections is driving a need for effective control methods. Vector populations have expanded their geographical ranges, while increasing resistance to chemical insecticides and a lack of effective treatments or vaccines has meant that the development of vector control methods is essential in the fight against mosquito-transmitted diseases. This review will focus on Toxorhynchites, a non-hematophagous mosquito genus which is a natural predator of vector species and may be exploited as a biological control agent. Their effectiveness in this role has been strongly debated for many years and early trials have been marred by misinformation and incomplete descriptions. Here, we draw together current knowledge of the general biology of Toxorhynchites and discuss how this updated information will benefit their role in an integrated vector management program.
RESUMO
Zika virus (ZIKV; Flaviviridae) is a mosquito-borne flavivirus shown to cause fetal abnormalities collectively known as congenital Zika syndrome and Guillain-Barré syndrome in recent outbreaks. Currently, there is no specific treatment or vaccine available, and more effort is needed to identify cellular factors in the viral life cycle. Here, we investigated interactors of ZIKV envelope (E) protein by combining protein pull-down with mass spectrometry. We found that E interacts with the endoplasmic reticulum (ER) resident chaperone, glucose regulated protein 78 (GRP78). Although other flaviviruses are known to co-opt ER resident proteins, including GRP78, to enhance viral infectivity, the role ER proteins play during the ZIKV life cycle is yet to be elucidated. We showed that GRP78 levels increased during ZIKV infection and localised to sites coincident with ZIKV E staining. Depletion of GRP78 using specific siRNAs significantly reduced reporter-virus luciferase readings, viral protein synthesis, and viral titres. Additionally, GRP78 depletion reduced the ability of ZIKV to disrupt host cell translation and altered the localisation of viral replication factories, though there was no effect on viral RNA synthesis. In summary, we showed GRP78 is a vital host-factor during ZIKV infection, which may be involved in the coordination of viral replication factories.
Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Infecção por Zika virus/metabolismo , Zika virus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Proteínas do Envelope Viral/genética , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologiaRESUMO
Arboviruses are pathogens of humans and animals. A better understanding of the interactions between these pathogens and the arthropod vectors, such as mosquitoes, that transmit them is necessary to develop novel control measures. A major antiviral pathway in the mosquito vector is the exogenous small interfering RNA (exo-siRNA) pathway, which is induced by arbovirus-derived double-stranded RNA in infected cells. Although recent work has shown the key role played by Argonaute-2 (Ago-2) and Dicer-2 (Dcr-2) in this pathway, the regulatory mechanisms that govern these pathways have not been studied in mosquitoes. Here, we show that the Domino ortholog p400 has antiviral activity against the alphavirus Semliki Forest virus (Togaviridae) both in Aedes aegypti-derived cells and in vivo Antiviral activity of p400 was also demonstrated against chikungunya virus (Togaviridae) and Bunyamwera virus (Peribunyaviridae) but not Zika virus (Flaviviridae). p400 was found to be expressed across mosquito tissues and regulated ago-2 but not dcr-2 transcript levels in A. aegypti mosquitoes. These findings provide novel insights into the regulation of an important aedine exo-siRNA pathway effector protein, Ago-2, by the Domino ortholog p400. They add functional insights to previous observations of this protein's antiviral and RNA interference regulatory activities in Drosophila melanogasterIMPORTANCE Female Aedes aegypti mosquitoes are vectors of human-infecting arthropod-borne viruses (arboviruses). In recent decades, the incidence of arthropod-borne viral infections has grown dramatically. Vector competence is influenced by many factors, including the mosquito's antiviral defenses. The exogenous small interfering RNA (siRNA) pathway is a major antiviral response restricting arboviruses in mosquitoes. While the roles of the effectors of this pathway, Argonaute-2 and Dicer-2 are well characterized, nothing is known about its regulation in mosquitoes. In this study, we demonstrate that A. aegypti p400, whose ortholog Domino in Drosophila melanogaster is a chromatin-remodeling ATPase member of the Tip60 complex, regulates siRNA pathway activity and controls ago-2 expression levels. In addition, we found p400 to have antiviral activity against different arboviruses. Therefore, our study provides new insights into the regulation of the antiviral response in A. aegypti mosquitoes.
Assuntos
Aedes/genética , Proteínas Argonautas/genética , Proteínas de Insetos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Aedes/virologia , Animais , Arbovírus/fisiologia , Feminino , Regulação da Expressão Gênica , Mosquitos Vetores/genética , Mosquitos Vetores/virologiaRESUMO
Zika virus (ZIKV) infection during pregnancy is associated with microcephaly, a congenital malformation resulting from neuroinflammation and direct effects of virus replication on the developing central nervous system (CNS). However, the exact changes in the affected CNS remain unknown. Here, we show by transcriptome analysis (at 48 h post-infection) and multiplex immune profiling that human induced-neuroprogenitor stem cells (hiNPCs) respond to ZIKV infection with a strong induction of type-I interferons (IFNs) and several type-I IFNs stimulated genes (ISGs), notably cytokines and the pro-apoptotic chemokines CXCL9 and CXCL10. By comparing the inflammatory profile induced by a ZIKV Brazilian strain with an ancestral strain isolated from Cambodia in 2010, we observed that the response magnitude differs among them. Compared to ZIKV/Cambodia, the experimental infection of hiNPCs with ZIKV/Brazil resulted in a diminished induction of ISGs and lower induction of several cytokines (IFN-α, IL-1α/ß, IL-6, IL-8, and IL-15), consequently favoring virus replication. From ZIKV-confirmed infant microcephaly cases, we detected a similar profile characterized by the presence of IFN-α, CXCL10, and CXCL9 in cerebrospinal fluid (CSF) samples collected after birth, evidencing a sustained CNS inflammation. Altogether, our data suggest that the CNS may be directly affected due to an unbalanced and chronic local inflammatory response, elicited by ZIKV infection, which contributes to damage to the fetal brain.
Assuntos
Sistema Nervoso Central/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Microcefalia/imunologia , Células-Tronco Neurais/citologia , Zika virus/imunologia , Brasil , Camboja , Células Cultivadas , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Quimiocina CXCL10/líquido cefalorraquidiano , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/líquido cefalorraquidiano , Quimiocina CXCL9/imunologia , Citocinas/análise , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Inflamação/imunologia , Inflamação/patologia , Interferon-alfa/líquido cefalorraquidiano , Interferon-alfa/imunologia , Interferon beta/imunologia , Masculino , Microcefalia/patologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Replicação Viral/imunologia , Infecção por Zika virus/imunologiaRESUMO
The circadian clock regulates immune responses to microbes and affects pathogen replication, but the underlying molecular mechanisms are not well understood. Here we demonstrate that the circadian components BMAL1 and REV-ERBα influence several steps in the hepatitis C virus (HCV) life cycle, including particle entry into hepatocytes and RNA genome replication. Genetic knock out of Bmal1 and over-expression or activation of REV-ERB with synthetic agonists inhibits the replication of HCV and the related flaviruses dengue and Zika via perturbation of lipid signaling pathways. This study highlights a role for the circadian clock component REV-ERBα in regulating flavivirus replication.
Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Flavivirus/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Replicação Viral/efeitos dos fármacos , Fatores de Transcrição ARNTL/imunologia , Fatores de Transcrição ARNTL/farmacologia , Linhagem Celular , Relógios Circadianos/imunologia , Replicação do DNA , Dengue , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Flavivirus/efeitos dos fármacos , Flavivirus/metabolismo , Flavivirus/patogenicidade , Regulação da Expressão Gênica/genética , Genes Essenciais/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/imunologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/farmacologia , Proteômica , RNA Mensageiro/metabolismo , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/genética , Infecção por Zika virusRESUMO
Arthropod vectors control the replication of arboviruses through their innate antiviral immune responses. In particular, the RNA interference (RNAi) pathways are of notable significance for the control of viral infections. Although much has been done to understand the role of RNAi in vector populations, little is known about its importance in non-vector mosquito species. In this study, we investigated the presence of an RNAi response in Toxorhynchites amboinensis, which is a non-blood feeding species proposed as a biological control agent against pest mosquitoes. Using a derived cell line (TRA-171), we demonstrate that these mosquitoes possess a functional RNAi response that is active against a mosquito-borne alphavirus, Semliki Forest virus. As observed in vector mosquito species, small RNAs are produced that target viral sequences. The size and characteristics of these small RNAs indicate that both the siRNA and piRNA pathways are induced in response to infection. Taken together, this data suggests that Tx. amboinensis are able to control viral infections in a similar way to natural arbovirus vector mosquito species. Understanding their ability to manage arboviral infections will be advantageous when assessing these and similar species as biological control agents.
Assuntos
Culicidae/genética , Culicidae/virologia , Interferência de RNA , Vírus da Floresta de Semliki/genética , Infecções por Alphavirus/imunologia , Animais , Agentes de Controle Biológico , Linhagem Celular , Culicidae/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Inata , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , RNA Interferente Pequeno/genética , Vírus da Floresta de Semliki/imunologia , Replicação ViralRESUMO
Zika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.
Assuntos
Antígenos Virais/genética , Desenho de Fármacos , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Adenoviridae/genética , Animais , Anticorpos Facilitadores/imunologia , Antígenos Virais/imunologia , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos/genética , Humanos , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Pan troglodytes/virologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologiaRESUMO
Zika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signaling protein (MAVS), implicating RIG-I-like receptors (RLRs) as upstream sensors of viral RNA. Indeed, RIG-I and the related RNA sensor MDA5 contributed to type I IFN induction in response to RNA from infected cells. We found that ZIKV NS5 from a recent Brazilian isolate blocked type I IFN induction downstream of RLRs and also inhibited type I IFN receptor (IFNAR) signaling. We defined the ZIKV NS5 nuclear localization signal and report that NS5 nuclear localization was not required for inhibition of signaling downstream of IFNAR. Mechanistically, NS5 blocked IFNAR signaling by both leading to reduced levels of STAT2 and by blocking phosphorylation of STAT1, two transcription factors activated by type I IFNs. Taken together, our observations suggest that ZIKV infection induces a type I IFN response via RLRs and that ZIKV interferes with this response by blocking signaling downstream of RLRs and IFNAR.
Assuntos
Proteína DEAD-box 58/imunologia , Interferon Tipo I/metabolismo , RNA/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Brasil , Proteína DEAD-box 58/genética , Regulação para Baixo , Células HEK293 , Humanos , Interferon Tipo I/genética , Fosforilação , Receptores Imunológicos , Transdução de Sinais , Replicação Viral , Zika virus , Infecção por Zika virusRESUMO
Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.
Assuntos
Produtos Biológicos/normas , Contaminação de Medicamentos/prevenção & controle , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Animais , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral , Humanos , Risco , Células Vero , Infecção por Zika virus/transmissãoRESUMO
The recent outbreak of infection with Zika virus (ZIKV; Flaviviridae) has attracted attention to this previously neglected mosquito-borne pathogen and the need for efficient therapies. Since flavivirus replication is generally known to be dependent on fatty acid biosynthesis, two inhibitors of this pathway, 5-(tetradecyloxyl)-2-furoic acid (TOFA) and cerulenin, were tested for their potentiality to inhibit virus replication. At concentrations previously shown to inhibit the replication of other flaviviruses, neither drug had a significant antiviral affect against ZIKV, but reduced the replication of the non-related mosquito-borne Semliki Forest virus (Togaviridae).
Assuntos
Antivirais/farmacologia , Cerulenina/farmacologia , Inibidores da Síntese de Ácidos Graxos/farmacologia , Furanos/farmacologia , Hipolipemiantes/farmacologia , Vírus da Floresta de Semliki/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Células A549/virologia , Relação Dose-Resposta a Droga , Humanos , Replicação Viral/efeitos dos fármacosRESUMO
RNA interference (RNAi) controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA) and exogenous short interfering RNA (exo-siRNA) pathways, which are characterized by the production of virus-derived small RNAs of 25-29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV)-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2); although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C) protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.
Assuntos
Aedes/virologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Interferência de RNA , RNA Interferente Pequeno , Zika virus/fisiologia , Aedes/citologia , Alphavirus/genética , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Proteínas de Insetos/metabolismo , Replicação Viral , Vírus da Febre Amarela/genética , Zika virus/genética , Infecção por Zika virus/transmissãoRESUMO
The small interfering RNA (siRNA) pathway is a major antiviral response in mosquitoes; however, another RNA interference pathway, the PIWI-interacting RNA (piRNA) pathway, has been suggested to be antiviral in mosquitoes. Piwi4 has been reported to be a key mediator of this response in mosquitoes, but it is not involved in the production of virus-specific piRNAs. Here, we show that Piwi4 associates with members of the antiviral exogenous siRNA pathway (Ago2 and Dcr2), as well as with proteins of the piRNA pathway (Ago3, Piwi5, and Piwi6) in an Aedes aegypti-derived cell line, Aag2. Analysis of small RNAs captured by Piwi4 revealed that it is predominantly associated with virus-specific siRNAs in Semliki Forest virus-infected cells and, to a lesser extent, with viral piRNAs. By using a Dcr2 knockout cell line, we showed directly that Ago2 lost its antiviral activity, as it was no longer bound to siRNAs, but Piwi4 retained its antiviral activity in the absence of the siRNA pathway. These results demonstrate a complex interaction between the siRNA and piRNA pathways in A. aegypti and identify Piwi4 as a noncanonical PIWI protein that interacts with members of the siRNA and piRNA pathways, and its antiviral activities may be independent of either pathway. IMPORTANCE Mosquitoes transmit several pathogenic viruses, for example, the chikungunya and Zika viruses. In mosquito cells, virus replication intermediates in the form of double-stranded RNA are cleaved by Dcr2 into 21-nucleotide-long siRNAs, which in turn are used by Ago2 to target the virus genome. A different class of virus-derived small RNAs, PIWI-interacting RNAs (piRNAs), have also been found in infected insect cells. These piRNAs are longer and are produced in a Dcr2-independent manner. The only known antiviral protein in the PIWI family is Piwi4, which is not involved in piRNA production. It is associated with key proteins of the siRNA and piRNA pathways, although its antiviral function is independent of their actions.
RESUMO
The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito-borne flaviviruses have evolved to antagonise type I interferon mediated immune responses.
Assuntos
Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interferon Tipo I/genética , Proteínas não Estruturais Virais/fisiologia , Animais , Culicidae/virologia , Infecções por Flavivirus/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Insetos Vetores/virologia , Interferon Tipo I/metabolismo , Ativação Transcricional/imunologiaRESUMO
BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.