Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38722754

RESUMO

Advancing age increases cardiovascular disease risk, in part, because of impaired glycocalyx thickness and endothelial dysfunction. Glycocalyx-targeted therapies, such as Endocalyx Pro{trade mark, serif}, could improve both glycocalyx thickness and endothelial function in older adults, however, this has yet to be tested. We hypothesized that Endocalyx Pro{trade mark, serif} supplementation would increase glycocalyx thickness and endothelial function in older adults. Twenty-three older adults aged 66±7 years (52% female) were enrolled in a randomized, double-blind, placebo-controlled, parallel-arms study to investigate the effect of 12-week Endocalyx Pro{trade mark, serif} supplementation (3,712 mg/day) on glycocalyx thickness and endothelial function. Glycocalyx thickness was assessed using the GlycoCheck and endothelial function was determined via brachial artery flow-mediated dilation (FMD). Between-group comparisons revealed Endocalyx Pro{trade mark, serif} did not increase glycocalyx thickness in microvessels 4-25µm (P=0.33), 4-7µm (P=0.07), or 10-25µm (P=0.47) in diameter when compared with placebo. Additionally, Endocalyx Pro did not significantly improve FMD [mean ratio (95% CI) for between-group comparisons, 1.16 (0.77-1.74); P=0.48]. However, Endocalyx Pro{trade mark, serif} improved FMD normalized to shear rate area under the curve [mean ratio (95% CI) for between-group comparisons, 2.41 (1.14,4.13); P=0.001]. Moreover, Endocalyx Pro{trade mark, serif} increased capillary glycocalyx thickness more than placebo in individuals not taking anti-hypertensive medication [mean difference (95% CI) for between-group comparison, -0.08 (-0.15,-0.01); P=0.02]. Our pilot study suggests that Endocalyx Pro{trade mark, serif} supplementation is feasible in older adults but had no measurable effect on overall glycocalyx thickness and FMD. However, Endocalyx Pro{trade mark, serif} may have select effects on capillary glycocalyx thickness and FMD normalized to shear rate among older adults, but further investigation is warranted.

2.
Arterioscler Thromb Vasc Biol ; 44(5): 1101-1113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545783

RESUMO

BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.


Assuntos
Fator 6 de Ribosilação do ADP , Endotélio , Resistência à Insulina , Músculo Esquelético , Camundongos , Fator 6 de Ribosilação do ADP/genética , Fator 6 de Ribosilação do ADP/metabolismo , Endotélio/metabolismo , Camundongos Endogâmicos C57BL , Intolerância à Glucose , Tamoxifeno , Camundongos Knockout , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/metabolismo , Obesidade/patologia , Glucose/metabolismo , Dieta Hiperlipídica , Camundongos Obesos , Vasodilatação
3.
J Physiol ; 602(2): 355-372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165402

RESUMO

This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Idoso de 80 Anos ou mais , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Envelhecimento/fisiologia , Extremidade Inferior , DNA Mitocondrial
4.
Aging Cell ; 23(2): e14040, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017701

RESUMO

Systemic inhibition of the mammalian target of rapamycin (mTOR) delays aging and many age-related conditions including arterial and metabolic dysfunction. However, the mechanisms and tissues involved in these beneficial effects remain largely unknown. Here, we demonstrate that activation of S6K, a downstream target of mTOR, is increased in arteries with advancing age, and that this occurs preferentially in the endothelium compared with the vascular smooth muscle. Induced endothelial cell-specific deletion of mTOR reduced protein expression by 60-70%. Although this did not significantly alter arterial and metabolic function in young mice, endothelial mTOR reduction reversed arterial stiffening and improved endothelium-dependent dilation (EDD) in old mice, indicating an improvement in age-related arterial dysfunction. Improvement in arterial function in old mice was concomitant with reductions in arterial cellular senescence, inflammation, and oxidative stress. The reduction in endothelial mTOR also improved glucose tolerance in old mice, and this was associated with attenuated hepatic gluconeogenesis and improved lipid tolerance, but was independent of alterations in peripheral insulin sensitivity, pancreatic beta cell function, or fasted plasma lipids in old mice. Lastly, we found that endothelial mTOR reduction suppressed gene expression of senescence and inflammatory markers in endothelial-rich (i.e., lung) and metabolically active organs (i.e., liver and adipose tissue), which may have contributed to the improvement in metabolic function in old mice. This is the first evidence demonstrating that reducing endothelial mTOR in old age improves arterial and metabolic function. These findings have implications for future drug development.


Assuntos
Endotélio Vascular , Vasodilatação , Animais , Camundongos , Vasodilatação/fisiologia , Envelhecimento/metabolismo , Artérias/metabolismo , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Células Endoteliais/metabolismo , Sirolimo/farmacologia , Mamíferos/metabolismo
5.
J Appl Physiol (1985) ; 136(2): 330-336, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126088

RESUMO

The endothelial glycocalyx is a dynamic, gel-like layer that is critical to normal vascular endothelial function. Heparin impairs the endothelial glycocalyx and reduces vascular endothelial function in a murine model; however, this has yet to be tested in healthy humans. We hypothesized that a single bolus dose of heparin would increase circulating glycocalyx components and decrease endothelial glycocalyx thickness resulting in blunted brachial artery vasodilation in healthy younger adults. Healthy adults (n = 19, aged 18-39 yr, 53% female) underwent measurements of the endothelial glycocalyx and vascular endothelial function at baseline and after a single bolus 5,000 U dose of heparin. The glycocalyx components syndecan-1 and heparan sulfate were measured from plasma samples using enzyme-linked immunosorbent assays. Glycocalyx thickness was determined as perfused boundary region (PBR) in sublingual microvessels using the GlycoCheck. Endothelial function was measured via ultrasonography and quantified as brachial artery flow-mediated dilation (FMD). Following acute heparin administration, there was no increase in syndecan-1 or heparan sulfate (P = 0.90 and P = 0.49, respectively). In addition, there was no change in PBR 4-7 µm (P = 0.55), PBR 10-25 µm (P = 0.63), or 4-25 µm (P = 0.49) after heparin treatment. Furthermore, we did not observe a change in FMDmm (P = 0.23), FMD% (P = 0.35), or plasma nitrite concentrations (P = 0.10) in response to heparin. Finally, time to peak dilation and peak FMD normalized to shear stress were unchanged following heparin (P = 0.59 and P = 0.21, respectively). Our pilot study suggests that a single bolus intravenous dose of heparin does not result in endothelial glycocalyx degradation or vascular endothelial dysfunction in healthy younger adults.NEW & NOTEWORTHY The endothelial glycocalyx's role in modulating vascular endothelial dysfunction with aging and disease is becoming increasingly recognized. This study presents novel findings that acute heparin administration is not a feasible method to experimentally degrade the endothelial glycocalyx and measure concurrent changes in vascular endothelial function in healthy humans. Alternative approaches will be needed to translate findings from preclinical studies and test the effects of acute endothelial glycocalyx degradation on vascular endothelial function in humans.


Assuntos
Heparina , Sindecana-1 , Adulto , Humanos , Feminino , Camundongos , Animais , Masculino , Heparina/farmacologia , Heparina/metabolismo , Glicocálix/metabolismo , Projetos Piloto , Endotélio Vascular , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia
6.
Aging (Albany NY) ; 15(19): 9913-9947, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37787989

RESUMO

Advanced age is the greatest risk factor for cardiovascular disease (CVD), the leading cause of death. Arterial function is impaired in advanced age which contributes to the development of CVD. One underexplored hypothesis is that DNA damage within arteries leads to this dysfunction, yet evidence demonstrating the incidence and physiological consequences of DNA damage in arteries, and in particular, in the microvasculature, in advanced age is limited. In the present study, we began by assessing the abundance of DNA damage in human and mouse lung microvascular endothelial cells and found that aging increases the percentage of cells with DNA damage. To explore the physiological consequences of increases in arterial DNA damage, we evaluated measures of endothelial function, microvascular and glycocalyx properties, and arterial stiffness in mice that were lacking or heterozygous for the double-strand DNA break repair protein ATM kinase. Surprisingly, in young mice, vascular function remained unchanged which led us to rationalize that perhaps aging is required to accumulate DNA damage. Indeed, in comparison to wild type littermate controls, mice heterozygous for ATM that were aged to ~18 mo (Old ATM +/-) displayed an accelerated vascular aging phenotype characterized by increases in arterial DNA damage, senescence signaling, and impairments in endothelium-dependent dilation due to elevated oxidative stress. Furthermore, old ATM +/- mice had reduced microvascular density and glycocalyx thickness as well as increased arterial stiffness. Collectively, these data demonstrate that DNA damage that accumulates in arteries in advanced age contributes to arterial dysfunction that is known to drive CVD.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Humanos , Camundongos , Animais , Idoso , Senescência Celular/genética , Quebras de DNA de Cadeia Dupla , Células Endoteliais , Envelhecimento/genética , Envelhecimento/metabolismo , Reparo do DNA , Endotélio Vascular/metabolismo , Doenças Cardiovasculares/metabolismo
7.
Curr Opin Clin Nutr Metab Care ; 26(6): 543-550, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555800

RESUMO

PURPOSE OF REVIEW: This review will highlight recent studies that have examined the endothelial glycocalyx in a variety of health conditions, as well as potential glycocalyx-targeted therapies. RECENT FINDINGS: A degraded glycocalyx is present in individuals that consume high sodium diet or have kidney disease, diabetes, preeclampsia, coronavirus disease 2019 (COVID-19), or sepsis. Specifically, these conditions are accompanied by elevated glycocalyx components in the blood, such as syndecan-1, syndecans-4, heparin sulfate, and enhanced heparinase activity. Impaired glycocalyx barrier function is accompanied by decreased nitric oxide bioavailability, increased leukocyte adhesion to endothelial cells, and vascular permeability. Glycocalyx degradation appears to play a key role in the progression of cardiovascular complications. However, studies that have used glycocalyx-targeted therapies to treat these conditions are scarce. Various therapeutics can restore the glycocalyx in kidney disease, diabetes, COVID-19, and sepsis. Exposing endothelial cells to glycocalyx components, such as heparin sulfate and hyaluronan protects the glycocalyx. SUMMARY: We conclude that the glycocalyx is degraded in a variety of health conditions, although it remains to be determined whether glycocalyx degradation plays a causal role in disease progression and severity, and whether glycocalyx-targeted therapies improve patient health outcomes. Future studies are warranted to investigate therapeutic strategies that target the endothelial glycocalyx.


Assuntos
COVID-19 , Diabetes Mellitus , Nefropatias , Sepse , Humanos , Células Endoteliais/metabolismo , Glicocálix/metabolismo , COVID-19/metabolismo , Heparina/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias/metabolismo , Sulfatos/metabolismo , Endotélio Vascular
8.
Aging Cell ; 22(8): e13875, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259606

RESUMO

In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.


Assuntos
Células Endoteliais , Telômero , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Senescência Celular/genética , Complexo Shelterina , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Inflamação/genética , Inflamação/metabolismo
9.
PLoS One ; 18(5): e0285253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163513

RESUMO

Atherosclerosis is the root cause of major cardiovascular diseases (CVD) such as myocardial infarction and stroke. ADP-ribosylation factor 6 (Arf6) is a ubiquitously expressed GTPase known to be involved in inflammation, vascular permeability and is sensitive to changes in shear stress. Here, using atheroprone, ApoE-/- mice, with a single allele deletion of Arf6 (HET) or wildtype Arf6 (WT), we demonstrate that reduction in Arf6 attenuates atherosclerotic plaque burden and severity. We found that plaque burden in the descending aorta was lower in HET compared to WT mice (p˂0.001) after the consumption of an atherogenic Paigen diet for 5 weeks. Likewise, luminal occlusion, necrotic core size, plaque grade, elastic lamina breaks, and matrix deposition were lower in the aortic root atheromas of HET compared to WT mice (all p≤0.05). We also induced advanced human-like complex atherosclerotic plaque in the left carotid artery using partial carotid ligation surgery and found that atheroma area, plaque grade, intimal necrosis, intraplaque hemorrhage, thrombosis, and calcification were lower in HET compared to WT mice (all p≤0.04). Our findings suggest that the atheroprotection afforded by Arf6 heterozygosity may result from reduced immune cell migration (all p≤0.005) as well as endothelial and vascular smooth muscle cell proliferation (both p≤0.001) but independent of changes in circulating lipids (all p≥0.40). These findings demonstrate a critical role for Arf6 in the development and severity of atherosclerosis and suggest that Arf6 inhibition can be explored as a novel therapeutic strategy for the treatment of atherosclerotic CVD.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Fator 6 de Ribosilação do ADP , Aorta , Aterosclerose/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Necrose , Placa Aterosclerótica/genética
10.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205339

RESUMO

Background: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance, however, the underlying mechanisms remain incompletely understood. ADP ribosylation factor 6 (Arf6) is a small GTPase that plays a critical role in endothelial cell (EC) function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. Methods: We used mouse models of constitutive EC-specific Arf6 deletion (Arf6 f/- Tie2Cre) and tamoxifen inducible Arf6 knockout (Arf6 f/f Cdh5Cre). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose- and insulin-tolerance tests and hyperinsulinemic-euglycemic clamps. A fluorescence microsphere-based technique was used to measure tissue blood flow. Intravital microscopy was used to assess skeletal muscle capillary density. Results: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue (WAT) and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide (NO) bioavailability but independent of altered acetylcholine- or sodium nitroprusside-mediated vasodilation. In vitro Arf6 inhibition resulted in suppressed insulin stimulated phosphorylation of Akt and endothelial NO synthase. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow fed mice and glucose intolerance in high fat diet fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. Conclusion: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.

11.
Geroscience ; 45(4): 2351-2365, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36787090

RESUMO

Advanced age is accompanied by arterial dysfunction, as well as a diminished glycocalyx, which may be linked to reduced high molecular weight-hyaluronan (HMW-HA) synthesis. However, the impact of glycocalyx deterioration in age-related arterial dysfunction is unknown. We sought to determine if manipulations in glycocalyx properties would alter arterial function. Tamoxifen-induced hyaluronan synthase 2 (Has2) reduction was used to decrease glycocalyx properties. Three weeks post-tamoxifen treatment, glycocalyx thickness was lower in Has2 knockout compared to wild-type mice (P<0.05). Has2 reduction induced arterial dysfunction, demonstrated by impaired endothelium-dependent dilation (EDD) and elevated aortic stiffness (P<0.05). To augment glycocalyx properties, old mice received 10 weeks of a glycocalyx-targeted therapy via Endocalyx™ (old+ECX), which contains HMW-HA and other glycocalyx components. Compared to old control mice, glycocalyx properties and EDD were augmented, and aortic stiffness decreased in old+ECX mice (P<0.05). Old+ECX mice had a more youthful aortic phenotype, demonstrated by lower collagen content and higher elastin content than old control mice (P<0.05). Functional outcomes were repeated in old mice that underwent a diet supplemented solely with HMW-HA (old+HA). Compared to old controls, glycocalyx properties and EDD were augmented, and aortic stiffness was lower in old+HA mice (P<0.05). We did not observe any differences between old+HA and old+ECX mice (P>0.05). Has2 reduction phenocopies age-related arterial dysfunction, while 10 weeks of glycocalyx-targeted therapy that restores the glycocalyx also ameliorates age-related arterial dysfunction. These findings suggest that the glycocalyx may be a viable therapeutic target to ameliorate age-related arterial dysfunction.


Assuntos
Artérias , Glicocálix , Animais , Camundongos , Aorta , Suplementos Nutricionais , Tamoxifeno
12.
Aging Cell ; 22(2): e13767, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36637079

RESUMO

Aging results in an elevated burden of senescent cells, senescence-associated secretory phenotype (SASP), and tissue infiltration of immune cells contributing to chronic low-grade inflammation and a host of age-related diseases. Recent evidence suggests that the clearance of senescent cells alleviates chronic inflammation and its associated dysfunction and diseases. However, the effect of this intervention on metabolic function in old age remains poorly understood. Here, we demonstrate that dasatinib and quercetin (D&Q) have senolytic effects, reducing age-related increase in senescence-associated ß-galactosidase, expression of p16 and p21 gene and P16 protein in perigonadal white adipose tissue (pgWAT; all p ≤ 0.04). This treatment also suppressed age-related increase in the expression of a subset of pro-inflammatory SASP genes (mcp1, tnf-α, il-1α, il-1ß, il-6, cxcl2, and cxcl10), crown-like structures, abundance of T cells and macrophages in pgWAT (all p ≤ 0.04). In the liver and skeletal muscle, we did not find a robust effect of D&Q on senescence and inflammatory SASP markers. Although we did not observe an age-related difference in glucose tolerance, D&Q treatment improved fasting blood glucose (p = 0.001) and glucose tolerance (p = 0.007) in old mice that was concomitant with lower hepatic gluconeogenesis. Additionally, D&Q improved insulin-stimulated suppression of plasma NEFAs (p = 0.01), reduced fed and fasted plasma triglycerides (both p ≤ 0.04), and improved systemic lipid tolerance (p = 0.006). Collectively, results from this study suggest that D&Q attenuates adipose tissue inflammation and improves systemic metabolic function in old age. These findings have implications for the development of therapeutic agents to combat metabolic dysfunction and diseases in old age.


Assuntos
Senescência Celular , Quercetina , Camundongos , Animais , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Senescência Celular/genética , Quercetina/farmacologia , Quercetina/uso terapêutico , Senoterapia , Tecido Adiposo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Glucose/metabolismo
13.
Nat Rev Cardiol ; 20(1): 38-51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853997

RESUMO

Endothelial cells are located at the crucial interface between circulating blood and semi-solid tissues and have many important roles in maintaining systemic physiological function. The vascular endothelium is particularly susceptible to pathogenic stimuli that activate tumour suppressor pathways leading to cellular senescence. We now understand that senescent endothelial cells are highly active, secretory and pro-inflammatory, and have an aberrant morphological phenotype. Moreover, endothelial senescence has been identified as an important contributor to various cardiovascular and metabolic diseases. In this Review, we discuss the consequences of endothelial cell exposure to damaging stimuli (haemodynamic forces and circulating and endothelial-derived factors) and the cellular and molecular mechanisms that induce endothelial cell senescence. We also discuss how endothelial cell senescence causes arterial dysfunction and contributes to clinical cardiovascular diseases and metabolic disorders. Finally, we summarize the latest evidence on the effect of eliminating senescent endothelial cells (senolysis) and identify important remaining questions to be addressed in future studies.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Humanos , Células Endoteliais/fisiologia , Senescência Celular/fisiologia , Endotélio Vascular/metabolismo , Doenças Cardiovasculares/metabolismo
15.
Physiol Rep ; 10(23): e15518, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461654

RESUMO

Intrauterine growth restriction (IUGR) and exposure to a high-fat diet (HFD) independently increase the risk of cardiovascular disease (CVD) and hyperlipidemia. In our previous studies, IUGR increased blood pressure and promoted vascular remodeling and stiffness in early life, a finding that persisted and was augmented by a maternal HFD through postnatal day (PND) 60. The impact of these findings with aging and the development of hyperlipidemia and atherosclerosis remain unknown. We hypothesized that the previously noted impact of IUGR on hypertension, vascular remodeling, and hyperlipidemia would persist. Adult female rats were fed either a regular diet (RD) or high fat diet (HFD) prior to conception through lactation. IUGR was induced by uterine artery ligation. Offspring were weaned to either RD or HFD through PND 365. For both control (C) and IUGR (I) and rats, this resulted in the following six groups per sex: offspring from RD dams weaned to an RD (CRR and IRR), or offspring from HFD dams weaned to either an RD (CHR and IHR) or to an HFD (CHH and IHH). IHH male and female rats had increased large artery stiffness, a suggestion of fatty streaks in the aorta, and persistent decreased elastin and increased collagen in the aorta and carotid arteries. Post-weaning HFD intake increased blood lipids regardless of IUGR status. IUGR increased HFD-induced mortality. We speculate that HFD-induced risk of CVD and mortality is potentiated by developmental programming of the ECM.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Feminino , Masculino , Ratos , Animais , Humanos , Retardo do Crescimento Fetal/etiologia , Dieta Hiperlipídica/efeitos adversos , Remodelação Vascular , Artéria Uterina , Aterosclerose/etiologia
16.
Geroscience ; 44(6): 2741-2755, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36350415

RESUMO

Aging increases the risk of atherosclerotic cardiovascular disease which is associated with arterial senescence; however, the mechanisms responsible for the development of cellular senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) remain elusive. Here, we study the effect of aging on arterial DNA damage and telomere dysfunction. Aging resulted in greater DNA damage in ECs than VSMCs. Further, telomere dysfunction-associated DNA damage foci (TAF: DNA damage signaling at telomeres) were elevated with aging in ECs but not VMSCs. Telomere length was modestly reduced in ECs with aging and not sufficient to induce telomere dysfunction. DNA damage and telomere dysfunction were greatest in atheroprone regions (aortic minor arch) versus non-atheroprone regions (thoracic aorta). Collectively, these data demonstrate that aging results in DNA damage and telomere dysfunction that is greater in ECs than VSMCs and elevated in atheroprone aortic regions.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Telômero/genética , Dano ao DNA
17.
Physiol Rep ; 10(9): e15284, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35561022

RESUMO

Increased arterial stiffness is a cardiovascular disease risk factor in the setting of advancing age and Western diet (WD) induced obesity. Increases in large artery stiffness, as measured by pulse wave velocity (PWV), occur within 8 weeks of WD feeding in mice. Sirtuin-1 (Sirt1), a NAD-dependent deacetylase, regulates cellular metabolic activity and activation of this protein has been associated with vasoprotection in aged mice. The aim of the study was to elucidate the effect of global Sirt1 overexpression (Sirttg ) on WD-induced arterial stiffening. Sirt1 overexpression did not influence PWV in normal chow (NC) fed mice. However, PWV was higher in wild-type (WT) mice (p < 0.04), but not in Sirttg mice, after 12 weeks of WD and this effect was independent of changes in blood pressure or the passive pressure diameter relation in the carotid artery. Overexpression of Sirt1 was associated with lower collagen and higher elastin mRNA expression in the aorta of WD fed mice (both p < 0.05). Although MMP2 and MMP3 mRNA were both upregulated in WT mice after WD (both p < 0.05), this effect was reversed in Sirttg mice compared to WT mice fed WD (both p < 0.05). Surprisingly, histologically assessed collagen and elastin quality were unchanged in the aortas of WT or Sirttg mice after WD. However, Sirttg mice were protected from WD-induced glucose intolerance, although there was no difference in insulin tolerance between groups. These findings demonstrate a vasoprotective effect of Sirt1 overexpression that limits the increase in arterial stiffness in response to consumption of a WD.


Assuntos
Dieta Ocidental , Rigidez Vascular , Animais , Aorta/fisiologia , Colágeno/metabolismo , Dieta Ocidental/efeitos adversos , Elastina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Onda de Pulso , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Rigidez Vascular/fisiologia
18.
Physiology (Bethesda) ; 37(3): 154-173, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779281

RESUMO

Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Adolescente , Idoso , Envelhecimento/metabolismo , Aorta/metabolismo , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Humanos , Pessoa de Meia-Idade
20.
J Physiol ; 599(16): 3973-3991, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34164826

RESUMO

KEY POINTS: Increased large artery stiffness and impaired endothelium-dependent dilatation occur with advanced age. We sought to determine whether T cells mechanistically contribute to age-related arterial dysfunction. We found that old mice exhibited greater proinflammatory T cell accumulation around both the aorta and mesenteric arteries. Pharmacologic depletion or genetic deletion of T cells in old mice resulted in ameliorated large artery stiffness and greater endothelium-dependent dilatation compared with mice with T cells intact. ABSTRACT: Ageing of the arteries is characterized by increased large artery stiffness and impaired endothelium-dependent dilatation. T cells contribute to hypertension in acute rodent models but whether they contribute to chronic age-related arterial dysfunction is unknown. To determine whether T cells directly mediate age-related arterial dysfunction, we examined large elastic artery and resistance artery function in young (4-6 months) and old (22-24 months) wild-type mice treated with anti-CD3 F(ab'2) fragments to deplete T cells (150 µg, i.p. every 7 days for 28 days) or isotype control fragments. Old mice exhibited greater numbers of T cells in both aorta and mesenteric vasculature when compared with young mice. Old mice treated with anti-CD3 fragments exhibited depletion of T cells in blood, spleen, aorta and mesenteric vasculature. Old mice also exhibited greater numbers of aortic and mesenteric IFN-γ and TNF-α-producing T cells when compared with young mice. Old control mice exhibited greater large artery stiffness and impaired resistance artery endothelium-dependent dilatation in comparison with young mice. In old mice, large artery stiffness was ameliorated with anti-CD3 treatment. Anti-CD3-treated old mice also exhibited greater endothelium-dependent dilatation than age-matched controls. We also examined arterial function in young and old Rag-1-/- mice, which lack lymphocytes. Rag-1-/- mice exhibited blunted increases in large artery stiffness with age compared with wild-type mice. Old Rag-1-/- mice also exhibited greater endothelium-dependent dilatation compared with old wild-type mice. Collectively, these results demonstrate that T cells play an important role in age-related arterial dysfunction.


Assuntos
Rigidez Vascular , Envelhecimento , Animais , Endotélio Vascular , Artérias Mesentéricas , Camundongos , Linfócitos T , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA