Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Discov Oncol ; 15(1): 408, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235679

RESUMO

Lung adenocarcinoma (LUAD) is the most important subtype of lung cancer. It is well known that the gut microbiome plays an important role in the pathophysiology of various diseases, including cancer, but little research has been done on the intestinal microbiome associated with LUAD. Utilizing bioinformatics tools and data analysis, we identified novel potential prognostic biomarkers for LUAD. To integrate differentially expressed genes and clinical significance modules, we used a weighted correlation network analysis system. According to the Peryton database and the gutMGene database, the composition and structure of gut microbiota in LUAD patients differed from those in healthy individuals. LUAD was associated with 150 gut microbiota and 767 gut microbiota targets, with Krüppel-like factor 5 (KLF5) being the most closely related. KLF5 was associated with immune status and correlated well with the prognosis of LUAD patients. The identification of KLF5 as a potential prognostic biomarker suggests its utility in improving risk stratification and guiding personalized treatment strategies for LUAD patients. Altogether, KLF5 could be a potential prognostic biomarker in LUAD.

2.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 46-55, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372114

RESUMO

Lung adenocarcinoma (LUAD) is a common pathological type of non-small cell lung cancer; identifying preferable biomarkers has become one of the current challenges. Given that VTA1 has been reported associated with tumor progression in various human solid cancers but rarely reported in LUAD, herein, RNA sequencing data from TCGA and GTEx were obtained for analysis of VTA1 expression and differentially expressed gene (DEG). Furthermore, functional enrichment analysis of VTA1-related DEGs was performed by GO/KEGG, GSEA, immune cell infiltration analysis, and protein-protein interaction (PPI) network. In addition, the clinical significance of VTA1 in LUAD was figured out by Kaplan-Meier Cox regression and prognostic nomogram model. R package was used to analyze incorporated studies. As a result, VTA1 was highly expressed in various malignancies, including LUAD, compared with normal samples. Moreover, high expression of VTA1 was associated with poor prognosis in 533 LUAD samples, as well as T stage T2&T3&T4, N stage N1&N2&N3, M stage M1, pathologic stage II&III&IV, and residual tumor R1&R2, et al. (P < 0.05). High VTA1 was an independent prognostic factor in Cox regression analysis; Age and cytogenetics risk were included in the nomogram prognostic model. Furthermore, a total of 4232 DEGs were identified between the high- and the low-expression group, of which 736 genes were up-regulated and 3496 genes were down-regulated. Collectively, high expression of VTA1 is a potential biomarker for adverse outcomes in LUAD. The DEGs and pathways recognized in the study provide a preliminary grasp of the underlying molecular mechanisms of LUAD carcinogenesis and progression.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Complexos Endossomais de Distribuição Requeridos para Transporte , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Carcinogênese , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Prognóstico , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
3.
Phytomedicine ; 113: 154732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933457

RESUMO

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Assuntos
Adenocarcinoma de Pulmão , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico
4.
Clin Transl Oncol ; 25(4): 1080-1090, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36454516

RESUMO

PURPOSE: Lung cancer is the leading cause of cancer-related mortalities worldwide, and metastasis contributes to a large number of deaths in lung carcinoma patients. New approaches for anti-metastatic treatment are urgently needed. Enhanced fructose metabolism mediated by GLUT5 directly contributes to cancer metastasis. However, the underlying mechanism remains to be elucidated, which we aimed to explore in this study. METHODS: The overexpression and knockdown of SLC2A5, the encoding gene of GLUT5, were established by retrovirus system and CRISPR/Cas9 technology, respectively. Cell migration was conducted by trans-well assay. Western blotting assay was carried out to detect the expression of GLUT5, total AKT, phosphorylated AKT (pAKT-S473 and pAKT-T308) and LDHA. Lactate production was measured by colorimetric assay. Experimental lung metastasis model by tail vein injection was constructed to evaluate the metastatic potential of GLUT5 in vivo. RESULTS: Overexpression of SLC2A5 promoted migration of lung cancer cells both in vitro and in vivo, and shortened the overall survival of mice. While, SLC2A5 deletion blocked the migration of lung cancer cells. GLUT5-mediated fructose utilization upregulated phosphorylated AKT, which was responsible for enhanced migration of lung cancer cells. Additionally, GLUT5-mediated fructose utilization boosted glycolysis with overproduction of lactate, resulting in upregulation of phosphorylated AKT. Moreover, lung cancer cell migration and AKT activation were restrained by glycolysis inhibitor 2-deoxy-D-glucose (2-DG) or GLUT5-specific inhibitor 2,5-anhydro-D-mannitol (2,5-AM). CONCLUSION: Our study unveils glycolysis/lactate/AKT pathway is responsible for lung cancer cell migration induced by GLUT5-mediated fructose metabolism, providing a potential therapeutic avenue for lung cancer metastasis.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Movimento Celular , Frutose/metabolismo , Frutose/farmacologia , Glicólise , Lactatos , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166492, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850175

RESUMO

SUMO-specific proteases (SENPs) play pivotal roles in maintaining the balance of SUMOylation/de-SUMOylation and in SUMO recycling. Deregulation of SENPs leads to cellular dysfunction and corresponding diseases. As a key member of the SENP family, SENP1 is highly correlated with various cancers. However, the potential role of SENP1 in leukemia, especially in acute lymphoblastic leukemia (ALL), is not clear. This study shows that ALL cells knocking down SENP1 display compromised growth rather than significant alterations in chemosensitivity, although ALL relapse samples have a relatively higher expression of SENP1 than the paired diagnosis samples. Camptothecin derivatives 7-ethylcamptothecin (7E-CPT, a monomer compound) and topotecan (TPT, an approved clinical drug) induce specific SENP1 reduction and severe apoptosis of ALL cells, showing strong anticancer effects against ALL. Conversely, SENP1 could attenuate this inhibitory effect by targeting DNA topoisomerase I (TOP1) for de-SUMOylation, indicating that specific reduction in SENP1 induced by 7E-CPT and/or topotecan inhibits the proliferation of ALL cells.


Assuntos
Cisteína Endopeptidases , Inibidores da Topoisomerase I , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , DNA Topoisomerases Tipo I/genética , Sumoilação , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia
6.
Front Pharmacol ; 12: 753128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795587

RESUMO

Duhaldea pterocaula (Franch.) Anderb, also known as Inula pterocaula Franch (I. pterocaula), is a folk medicine of the Yi nationality in China. The Inula plants display various biological activities, including anti-nociceptive and anti-inflammatory properties. I. pterocaula has been traditionally used for the treatment of bronchitis, vasculitis, and dizziness. However, very few studies have been reported on the pharmacology of I. pterocaula. The present study aims to characterize the anti-nociceptive and anti-inflammatory properties of I. pterocaula and explore the underlying mechanism. I. pterocaula was extracted by 95% ethanol and further portioned with petroleum ether, ethyl acetate (EA) and n-butanol, sequentially, to obtain corresponding factions with different polarities. The EA fraction (IPEA) was found to be one of the most effective fractions. It demonstrated potent analgesic effects in both acute and inflammatory pain mouse models, and caused no anti-nociceptive tolerance. Furthermore, IPEA improved the tolerance of mice to morphine. IPEA also showed potent anti-inflammatory effects on LPS-induced septic mice. BIC, a GABAAR antagonist, reversed the effects of IPEA in pain and inflammation models. Collectively, GABAARs play a key role in the pharmacological effects of IPEA. I. pterocaula may be useful as a complementary or alternative therapeutic agent for the treatment of pain and inflammation.

7.
J Zhejiang Univ Sci B ; 22(11): 959-965, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783226

RESUMO

Lung cancer, which is exacerbated by environmental pollution and tobacco use, has become the most common cause of cancer-related deaths worldwide, with a five-year overall survival rate of only 19% (Siegel et al., 2020; Yang et al., 2020; Yu and Li, 2020). Nearly 85% of lung cancers are non-small cell lung cancers, of which lung adenocarcinoma is the most common subtype accounting for 50% of non-small cell lung cancer cases. At present, radiotherapy is the primary therapeutic modality for lung cancer at different stages, with significant prolongation of survival time (Hirsch et al., 2017; Bai et al., 2019; Shi et al., 2020). Irradiation can generate reactive oxygen species (ROS) through the radiolysis reaction of water and oxygen, cause DNA damage and oxidative stress, and subsequently result in cancer cell death (Kim et al., 2019). Nevertheless, radioresistance seriously hinders the success of treatment for lung cancer, owing to local recurrence and distant metastasis (Huang et al., 2021). Compared with small cell lung cancer, non-small cell lung cancer shows more tolerance to radiotherapy. Therefore, it is of great importance to decipher key mechanisms of radioresistance and identify effective molecular radiosensitizers to improve patient survival.


Assuntos
Apoptose , Neoplasias Pulmonares/radioterapia , Tolerância a Radiação , Enzimas de Conjugação de Ubiquitina/fisiologia , Células A549 , Animais , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2453-2462, 2021 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-34327910

RESUMO

The ban on addition of antibiotics in animal feed in China has made the search for new antibiotics substitutes, e.g. bacteriocin, a hot topic in research. The present study successfully isolated an antibacterial substance producing strain of Bacillus sp. from alpaca feces by agar diffusion method, using Escherichia coli, Salmonella enterica, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus and Listeria monocytogenes as indicator bacteria. The isolated strain was named as B. licheniformis SXAU06 based on colony morphology, Gram staining and 16S rRNA gene sequence. The antibacterial substance was isolated and purified through a series of procedures including (NH4)2SO4 precipitation, chloroform extraction, molecular interception and SDS-PAGE analysis. Bioinformatics analysis of the LC-MS/MS data indicated that the antibacterial substance was a bacteriocin-like substance (BLIS) with an approximate molecular weight of 14 kDa, and it was designated as BLIS_SXAU06. BLIS_SXAU06 exhibited high resistance to treatment of proteinase K, high temperature, high acidity and alkalinity. BLIS_SXAU06 was heterologously expressed in E. coli and the recombinant BLIS_SXAU06 exhibited effective antibacterial activity against S. aureus, S. epidermidis, M. luteus, and L. monocytogenes, showing potential to be investigated further.


Assuntos
Bacillus licheniformis , Bacteriocinas , Listeria monocytogenes , Animais , Antibacterianos/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , China , Cromatografia Líquida , Escherichia coli/genética , RNA Ribossômico 16S , Staphylococcus aureus , Espectrometria de Massas em Tandem
10.
Nat Commun ; 12(1): 1637, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712598

RESUMO

N-staging is a determining factor for prognostic assessment and decision-making for stage-based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes is currently the main method used by pathologists to calculate the number of metastatic lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies dramatically. Here, we propose a deep-learning framework for analyzing lymph node whole-slide images (WSIs) to identify lymph nodes and tumor regions, and then to uncover tumor-area-to-MLN-area ratio (T/MLN). After training, our model's tumor detection performance was comparable to that of experienced pathologists and achieved similar performance on two independent gastric cancer validation cohorts. Further, we demonstrate that T/MLN is an interpretable independent prognostic factor. These findings indicate that deep-learning models could assist not only pathologists in detecting lymph nodes with metastases but also oncologists in exploring new prognostic factors, especially those that are difficult to calculate manually.


Assuntos
Aprendizado Profundo , Excisão de Linfonodo/métodos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfonodos/patologia , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
11.
Biochem Biophys Res Commun ; 529(4): 950-956, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819604

RESUMO

ß-arrestin-2, a multifunctional adaptor protein, was originally identified as a negative regulator of G protein-mediated signaling. We previously revealed that SUMOylation as a novel mechanism modulates ß-arrestin-2-mediated IL-1R/TRAF6 signaling. However, the potential role of ß-arrestin-2 SUMOylation in tumor cells was incompletely explored. In this study, we showed that SUMOylation deficiency of ß-arrestin-2 resulted in slower migration of breast cancer cells, but little effect on the cell proliferation. Importantly, our data indicated that SUMOylation involves in ß-arrestin-2-dependent metabolic regulation, suggesting a potent regulatory pattern for ß-arrestin-2-mediated biological functions of tumor cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes e Vias Metabólicas/genética , Processamento de Proteína Pós-Traducional , beta-Arrestina 2/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Ontologia Genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Anotação de Sequência Molecular , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transdução de Sinais , Sumoilação , beta-Arrestina 2/metabolismo
12.
Genome Biol ; 21(1): 159, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616020

RESUMO

BACKGROUND: Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS: Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS: The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.


Assuntos
Evolução Biológica , Camelídeos Americanos/genética , Domesticação , Introgressão Genética , Genoma , Adaptação Biológica , Animais , Feminino , Masculino , Filogeografia , Seleção Genética , América do Sul
13.
Signal Transduct Target Ther ; 5(1): 42, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327643

RESUMO

Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) modulates a plethora of important biological processes, including tumorigenesis and cancer cell migration. However, the regulatory mechanism of TNFAIP1 degradation remains largely elusive. In the present study, with a label-free quantitative proteomic approach, TNFAIP1 was identified as a novel ubiquitin target of the Cullin-RING E3 ubiquitin ligase (CRL) complex. More importantly, Cul3-ROC1 (CRL3), a subfamily of CRLs, was identified to specifically interact with TNFAIP1 and promote its polyubiquitination and degradation. Mechanistically, BTBD9, a specific adaptor component of CRL3 complex, was further defined to bind and promote the ubiquitination and degradation of TNFAIP1 in cells. As such, downregulation of BTBD9 promoted lung cancer cell migration by upregulating the expression of TNFAIP1, whereas TNFAIP1 deletion abrogated this effect. Finally, bioinformatics and clinical sample analyses revealed that BTBD9 was downregulated while TNFAIP1 was overexpressed in human lung cancer, which was associated with poor overall survival of patients. Taken together, these findings reveal a previously unrecognized mechanism by which the CRL3BTBD9 ubiquitin ligase controls TNFAIP1 degradation to regulate cancer cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinogênese/genética , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Ubiquitina-Proteína Ligases/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Complexos Multiproteicos , Neoplasias/patologia , Proteólise , Proteômica , Ubiquitinação/genética
14.
Exp Dermatol ; 29(5): 467-476, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32170969

RESUMO

Melanogenesis, migration and proliferation of melanocytes are important factors that determine the hair colours of mammals. MicroRNAs (miRNAs) have been shown to be closely related to these processes. In melanocytes of alpacas, insulin-like growth factor 1 (IGF1) has been shown to improve melanogenesis through the cyclic AMP (cAMP) pathway. miR-379 was predicted to target insulin-like growth factor (IGF) receptor 1 (IGF1R), which binds to IGF1. Therefore, we hypothesized that miR-379 could mediate melanogenesis, migration and proliferation of melanocytes. Here, we report that miR-379 was highly expressed in alpaca melanocytes. Subsequent overexpression of miR-379 in alpaca melanocytes led to the generation of the phenotype of melanogenesis, proliferation and migration. In addition, the expression of genes related to these phenotypes in melanocytes was detected. Our results showed that miR-379 targets IGF1R in melanocytes. The overexpression of miR-379 stimulated dendrite extension or elongation and limited the perinuclear distribution of melanin, but inhibited melanogenesis via cAMP response element (CRE)-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway. miR-379 attenuated melanocyte migration by downregulating the focal adhesion kinase (FAK) and enhanced melanocyte proliferation by upregulating protein kinase B (AKT). These observations suggest the involvement of miR-379 in the physiological regulation of melanocytes, mediated by targeting IGF1R on insulin receptor (IR) compensation and subsequent crosstalk.


Assuntos
Camelídeos Americanos/metabolismo , Melanócitos/metabolismo , MicroRNAs/biossíntese , Pigmentação , Receptor IGF Tipo 1/biossíntese , Regiões 3' não Traduzidas , Fator 2 Ativador da Transcrição/metabolismo , Animais , Movimento Celular , Proliferação de Células , Melaninas/metabolismo , Camundongos , MicroRNAs/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fenótipo , Reação em Cadeia da Polimerase , Ligação Proteica , Receptor de Insulina/metabolismo
15.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32051337

RESUMO

Lung cancer (LC) is a leading cause of cancer-related deaths worldwide. Its rapid growth requires hyperactive catabolism of principal metabolic fuels. It is unclear whether fructose, an abundant sugar in current diets, is essential for LC. We demonstrated that, under the condition of coexistence of metabolic fuels in the body, fructose was readily used by LC cells in vivo as a glucose alternative via upregulating GLUT5, a major fructose transporter encoded by solute carrier family 2 member 5 (SLC2A5). Metabolomic profiling coupled with isotope tracing demonstrated that incorporated fructose was catabolized to fuel fatty acid synthesis and palmitoleic acid generation in particular to expedite LC growth in vivo. Both in vitro and in vivo supplement of palmitoleic acid could restore impaired LC propagation caused by SLC2A5 deletion. Furthermore, molecular mechanism investigation revealed that GLUT5-mediated fructose utilization was required to suppress AMPK and consequently activate mTORC1 activity to promote LC growth. As such, pharmacological blockade of in vivo fructose utilization using a GLUT5 inhibitor remarkably curtailed LC growth. Together, this study underscores the importance of in vivo fructose utilization mediated by GLUT5 in governing LC growth and highlights a promising strategy to treat LC by targeting GLUT5 to eliminate those fructose-addicted neoplastic cells.


Assuntos
Adenilato Quinase/metabolismo , Ácidos Graxos/biossíntese , Frutose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Neoplasias Pulmonares/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Células A549 , Adenocarcinoma/enzimologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Estudos de Coortes , Glucose/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Análise de Sobrevida
16.
Mol Biol Rep ; 47(3): 2137-2147, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32080807

RESUMO

The aim of the study was to produce a single-domain antibody (nanobody) specific for endothelin receptor type B (EDNRB) which has high expression in melanoma. Cultured human melanoma cells were used as antigens to immunize alpacas. After antibody generation was verified in alpaca serum, total RNA was extracted from alpaca lymphocytes and the target VHH fragment was amplified by two-step PCR, cloned in the pCANTAB5E phagemid vector, and used to transform Escherichia coli TG1 cells to obtain a phage-display nanobody library, which was enriched by panning. The results indicated successful construction of a phage-display anti-human melanoma A375 nanobodies library with a size of 1.2 × 108/ml and insertion rate of 80%. After screening, eight positive clones of anti-EDNRB nanobodies were used to infect E. coli HB2151 for production of soluble nanobodies, which were identified by ELISA. Finally, we obtained a high-affinity anti-EDNRB nanobody, which consisted of 119 amino acids (molecular weight: 12.97 kDa) with 22 amino acids in CDR3 and had good affinity in vitro. The results suggest that the nanobody may be potentially used for the treatment of human melanoma.


Assuntos
Afinidade de Anticorpos , Antineoplásicos Imunológicos/farmacologia , Antagonistas do Receptor de Endotelina B/farmacologia , Receptor de Endotelina B/metabolismo , Anticorpos de Domínio Único/farmacologia , Afinidade de Anticorpos/imunologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Melanoma/tratamento farmacológico , Melanoma/imunologia , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica/imunologia , Receptor de Endotelina B/imunologia , Análise de Sequência de DNA , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/isolamento & purificação
17.
BMC Complement Altern Med ; 19(1): 204, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391058

RESUMO

BACKGROUND: Metastasis is the main cause of lung cancer death. As a seed of metastasis, circulating tumor cells are an important target for metastasis intervention. The traditional Chinese medicine, Jinfukang, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). In this study, we investigated the action and underlying mechanisms of Jinfukang against circulating lung tumor cells. METHODS: The cell counting kit-8 (CCK-8), colony formation and cell cycle assays were used to study the cell proliferation ability. Flow cytometry was used to detect the apoptosis and the expression level of ROS and Caspase-3. Comet and TUNEL assays were used to detect DNA damage. DNA damage related pathway protein was detected by western blot. RESULTS: Jinfukang significantly inhibits the proliferation of CTC-TJH-01 cells by inducing G1 phase arrest and inhibits their colony formation in a dose-dependent manner. Moreover, Jinfukang induces apoptosis in CTC-TJH-01 cells through the ROS-mediated ATM/ATR-p53 pathway and DNA damage. CONCLUSIONS: Our findings suggest that Jinfukang may be a potential drug for lung cancer metastasis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Dano ao DNA/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Células Neoplásicas Circulantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
FEBS J ; 286(23): 4709-4720, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31276292

RESUMO

PIPKIγ, a key member of the type I phosphatidylinositol 4-phosphate kinase (PIPKI) family that regulates the spatial-temporal generation of PIP2, has been implicated in diverse biological processes including cell survival, cell polarity, and cell migration. An essential role of PIPKIγ in tumor cells and nerve cells has been established in previous studies. However, the function and regulatory mechanism of PIPKIγ remains incompletely understood. Here, we showed that PIPKIγ can specifically associate with the SUMO-conjugating (E2) enzyme UBC9 and can be SUMOylated both in vivo and in vitro. We further identified that Lys-591 is the critical SUMO-acceptor site of PIPKIγ and that SUMO conjugation at this site is required for PIPKIγ-driven keratinocyte migration and growth. Mechanistically, SUMOylation deficiency significantly disrupts PIPKIγ-mediated generation of intracellular PIP2, rather than the subcellular translocation and protein stability of PIPKIγ. Our findings reveal that PIPKIγ is a novel SUMOylation target and highlight the essential role of PIPKIγ SUMOylation in human keratinocyte function, providing an important orientation for in-depth study of wound repair.


Assuntos
Queratinócitos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Imunofluorescência , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estabilidade Proteica , Sumoilação/genética , Sumoilação/fisiologia
19.
Mol Med Rep ; 20(3): 2649-2656, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322203

RESUMO

MicroRNAs (miRNAs) serve various roles in the regulation of melanogenesis in mammalian melanocytes that contribute to the development of hair color. The manipulation of the melanocyte action is a new target for genetic improvement. Short tandem target mimic (STTM) is a potent approach for silencing miRNAs in plants and animals. To investigate the function of miR­143­5p in melanogenesis, STTM was used to block the expression of miR­143­5p (STTM­miR­143­5p). The molecular analysis and luciferase reporter assay identified myosin Va gene (MYO5A) as one of the miR­143­5p targets. STTM­miR­143­5p overexpression resulted in an increased expression of downstream melanogenesis genes including microphthalmia­associated transcription factor (MITF), tyrosinase family members [tyrosinase (TYR) and tyrosinase­related protein 1 (TYRP1)], melanophilin (MLPH), and Rab27a, thereby contributing to melanocyte pigmentation by promoting total alkali­soluble melanogenesis (ASM) and eumelanin (EM) contents; conversely, STTM­miR­143­5p overexpression resulted in decreased expression of the tyrosinase­related protein 2 (TYRP2)/dopachrome tautomerase (DCT), which is responsible for decreased pheomelanin (PM) content in mouse melanocytes. The results indicated that melanin production in melanocytes could be increased by manipulating miR­143­5p expression using STTM which resulted in ASM and EM production.


Assuntos
Melaninas/genética , Melanócitos/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos
20.
Colloids Surf B Biointerfaces ; 182: 110325, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301582

RESUMO

Targeting modifications and smart responsiveness of nanomedicines can enable anticancer drugs to be selectively delivered to and controllably released in tumour cells or tissues, which can reduce the treatment's toxicity and side effects. Good biocompatibility is crucial for the clinical application of any nanomedicine. In this study, a double-targeting molecule, an RGD peptide- and 4-(2-aminoethyl) morpholine-modified, doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanomedicine, that can be controllably released by the high levels of autophagic lysosomes in tumour cells was developed. The size of the spherical BSA nanoparticles is approximately 60 nm. In vitro experiments indicated that the RGD peptide- and 4-(2-aminoethyl) morpholine-modified, DOX-loaded BSA nanomedicine has a better therapeutic effect than free DOX. In vivo experiments suggested that the BSA nanomedicine can successfully suppress the progression of PC9 xenograft tumours. This phenomenon may be attributable to the endocytosis of a relatively large amount of nanomedicine and the effective release of the loaded chemotherapeutic agent, as induced by high levels of autolysosomes. Collectively, the results of this study provide a smart approach for increasing therapeutic efficacy using a double-targeting molecule-modified BSA nanomedicine.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Preparações de Ação Retardada , Doxorrubicina/farmacologia , Portadores de Fármacos , Neoplasias Pulmonares/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Lisossomos/metabolismo , Camundongos , Camundongos Nus , Morfolinas/química , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/ultraestrutura , Oligopeptídeos/química , Soroalbumina Bovina/química , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA