Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 86: 536-548, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30508674

RESUMO

Conjugated linoleic acid (CLA) has been shown to exhibit anti-inflammatory properties in the intestine in mammals. However, the effect of CLA on intestinal immune response in fish is still unknown. Therefore, a 65-day growth trial was conducted to investigate the effects of dietary conjugated linoleic acid (CLA) on morphology, selective immune parameters, and gene expressions in the intestine of grass carp. Seven isonitrogenous and isolipidic diets were formulated as follows: 0 (control), 0.5 (CLA0.5), 1 (CLA1), 1.5 (CLA1.5), 2 (CLA2), 2.5 (CLA2.5), and 3 (CLA3) g CLA per 100g of feed. RESULTS: showed that dietary supplementation of 1.5-3% CLA significantly (P < 0.05) increased the fold and enterocyte heights in the PI and MI of grass carp. Complement 3 (C3) and immunoglobulin M (IgM) contents in three intestinal segments were significantly (P < 0.05) higher in fish fed with CLA1.5 to CLA2.5 diets compared to fish fed the control diet. CLA1.5 to CLA2.5 diets significantly (P < 0.05) increased the mRNA expression levels of anti-inflammatory cytokines (IL-10 and TGFß1) and significantly (P < 0.05) reduced the mRNA expression levels of pro-inflammatory cytokines (IL-1ß, IL-8, and TNF-α) in the PI, MI, and DI. This improved expression of anti-inflammatory cytokines and the inhibited expression of pro-inflammatory cytokines in the intestine of grass carp, might be mediated via TLR4/NF-κB-signaling pathway. Our results suggested that CLA1.5 to CLA2 diets improved intestinal morphology, increased the expression of anti-inflammatory cytokines, and inhibited the expression of pro-inflammatory cytokines in the intestine of grass carp. In conclusion, dietary supplementation of 1.5%-2% CLA show the anti-inflammatory therapeutic potential in the intestine of grass carp. The anti-inflammatory therapeutic potential of CLA might be mediated via TLR4/NF-κB-signaling pathway.


Assuntos
Ração Animal , Carpas/genética , Carpas/imunologia , Intestinos/imunologia , Ácidos Linoleicos Conjugados/farmacologia , Animais , Citocinas/imunologia , Suplementos Nutricionais , Imunidade Inata , Inflamação , NF-kappa B/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia
2.
Fish Physiol Biochem ; 43(5): 1413-1420, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28488194

RESUMO

This study was designed to evaluate the effect of the replacement of fish oil (FO) by soybean oil (SO) on growth performance, liver lipid peroxidation, and biochemical composition in juvenile Chinese sucker, Myxocyprinus asiaticus. Fish (13.7 ± 0.2 g) in triplicate were fed five experimental diets in which 0% (FO as control), 40% (SO40), 60% (SO60), 80% (SO40), and 100% (SO100) FO were replaced by SO. The body weight gain of fish fed SO40, SO60, or SO80 diet was similar to FO group, but diets that have 100% soybean oil as dietary lipid significantly reduced fish growth (P < 0.05). Although the level of SO resulted in increasing crude lipid content of the liver, the level of SO did not significantly alter the hepatosomatic index (HSI). Indicators of peroxidation, such as vitamin E (VE) and thiobarbituric acid-reactive substance (TBARS) contents, were changed as increasing dietary SO. It was shown that the inclusion of SO in the diets increased VE concentrations, but reduced TBARS in the liver and total cholesterol (T-CHO) in the plasma. Linoleic acid (LA) and linolenic acid (LNA) significantly increased in fish liver fed diets that contained SO, but eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the ratio n-3/n-6 were significantly reduced by the inclusion of dietary SO (P < 0.05). Our results indicated that the inclusion of SO increased the hepatic VE content and reduced lipid peroxidation in fish. However, diet containing 100% SO as dietary lipid could reduce growth performance. Thus, we recommended that 40-80% SO can be used as dietary lipid to replace FO for juvenile Chinese sucker.


Assuntos
Ração Animal/análise , Cipriniformes/fisiologia , Óleos de Peixe/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Óleo de Soja/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fígado/química
3.
Adv Mater ; 28(1): 106-10, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26540390

RESUMO

A new type of flexible organic tribotronic transistor memory is proposed, which can be written and erased by externally applied touch actions as an active memory. By further coupling with an organic light-emitting diode (OLED), a visible and wearable touch monitoring system is achieved, in which touch triggering can be memorized and shown as the emission from the OLED.

4.
Fish Physiol Biochem ; 41(1): 73-89, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25362563

RESUMO

Fatty liver syndrome is a prevalent problem of farmed fish. Conjugated linoleic acid (CLA) has received increased attention recently as a fat-reducing fatty acid to control fat deposition in mammals. Therefore, the aim of the present study was to determine whether dietary CLA can reduce tissue lipid content of darkbarbel catfish (Pelteobagrus vachelli) and whether decreased lipid content is partially due to alterations in lipid metabolism enzyme activities and fatty acid profiles. A 76-day feeding trial was conducted to investigate the effect of dietary CLA on the growth, tissue lipid deposition, and fatty acid composition of darkbarbel catfish. Five diets containing 0 % (control), 0.5 % (CLA0.5), 1 % (CLA1), 2 % (CLA2), and 3 % (CLA3) CLA levels were evaluated. Results showed that fish fed with 2-3 % CLA diets showed a significantly lower specific growth rate and feed conversion efficiency than those fed with the control diet. Dietary CLA decreased the lipid contents in the liver and intraperitoneal fat with the CLA levels from 1 to 3 %. Fish fed with 2-3 % CLA diets showed significantly higher lipoprotein lipase and hepatic triacylglycerol lipase activities in liver than those of fish fed with the control, and fish fed with 1-3 % CLA diets had significantly higher pancreatic triacylglycerol lipase activities in liver than those of fish fed with the control. Dietary CLA was incorporated into liver, intraperitoneal fat, and muscle lipids, with higher percentages observed in liver compared with other tissues. Liver CLA deposition was at the expense of monounsaturated fatty acids (MUFA). In contrast, CLA deposition appeared to be primarily at the expense of MUFA and n-3 polyunsaturated fatty acids (PUFA) in the intraperitoneal fat, whereas in muscle it was at the expense of n-3 PUFA. Our results suggested that CLA at a 1 % dose can reduce liver lipid content without eliciting any negative effect on growth rate in darkbarbel catfish. This lipid-lowering effect could be in part due to an increment in the activity of lipid metabolism enzymes and an extensive interconversion of fatty acids. Although CLA deposition in muscle (0.66-3.19 % of total fatty acids) are higher than presented in natural sources of CLA, EPA (C20:5n-3) in fish muscle appears simultaneously expendable, when the fish fed with 2-3 % CLA.


Assuntos
Aquicultura/métodos , Peixes-Gato , Fígado Gorduroso/veterinária , Doenças dos Peixes/prevenção & controle , Crescimento/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Metabolismo dos Lipídeos/fisiologia , Análise de Variância , Animais , Gorduras na Dieta , Ácidos Graxos/análise , Fígado Gorduroso/prevenção & controle , Lipase/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA