Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Wiley Interdiscip Rev RNA ; 15(2): e1844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576085

RESUMO

RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.


Assuntos
Sistemas CRISPR-Cas , RNA , RNA/genética , Edição de Genes , Oligonucleotídeos Antissenso , Interferência de RNA
2.
Nat Biotechnol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448662

RESUMO

Programmable RNA pseudouridylation has emerged as a new type of RNA base editor to suppress premature termination codons (PTCs) that can lead to truncated and nonfunctional proteins. However, current methods to correct disease-associated PTCs suffer from low efficiency and limited precision. Here we develop RESTART v3, which uses near-cognate tRNAs to improve the readthrough efficiency of pseudouridine-modified PTCs. We show an average of ~5-fold (range: 2.1- to 9.5-fold) higher editing efficiency than RESTART v2 in cultured cells and achieve functional PTC readthrough in disease cell models of cystic fibrosis and Hurler syndrome. Furthermore, RESTART v3 enables accurate incorporation of the original amino acid for nearly half of the PTC sites, considering the naturally occurring frequencies of sense-to-nonsense codons, without affecting normal termination codons. Although off-target sites were detected, we did not observe changes to the coding information or the expression level of transcripts, and the overall natural tRNA abundance remained constant.

3.
AIDS Care ; : 1-11, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38176025

RESUMO

ABSTRACTLittle is known about gender differences in the symptom burden of people living with HIV/AIDS (PLWHA) on antiretroviral therapy in China. This study was conducted based on a biopsychosocial-medical model to describe gender differences in symptom burden among 1035 PLWHA in Yunnan Province, China. After propensity score matching, 798 PLWHA were included in this analysis. Feeling stressed, poor sleep, and memory loss were the most burdensome symptoms among men, while feeling stressed, memory loss, and dizziness were the most burdensome symptoms among women. Among men PLWHA, factors associated with symptom burden were being of the ethnic minority, CD4 count ≥ 500 cells/mm3, physical functioning, and social support. Among women PLWHA, factors associated with symptom burden were being an inpatient, physical functioning, psychological functioning, and social support. Our findings suggest that healthcare providers need to take into account gender differences when developing optimal prevention, treatment, and care programs that provide individualized care to reduce patients' symptom burden.

4.
BMC Bioinformatics ; 24(1): 463, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062357

RESUMO

Single-cell sequencing has shed light on previously inaccessible biological questions from different fields of research, including organism development, immune function, and disease progression. The number of single-cell-based studies increased dramatically over the past decade. Several new methods and tools have been continuously developed, making it extremely tricky to navigate this research landscape and develop an up-to-date workflow to analyze single-cell sequencing data, particularly for researchers seeking to enter this field without computational experience. Moreover, choosing appropriate tools and optimal parameters to meet the demands of researchers represents a major challenge in processing single-cell sequencing data. However, a specific resource for easy access to detailed information on single-cell sequencing methods and data processing pipelines is still lacking. In the present study, an online resource called SingleScan was developed to curate all up-to-date single-cell transcriptome/genome analyzing tools and pipelines. All the available tools were categorized according to their main tasks, and several typical workflows for single-cell data analysis were summarized. In addition, spatial transcriptomics, which is a breakthrough molecular analysis method that enables researchers to measure all gene activity in tissue samples and map the site of activity, was included along with a portion of single-cell and spatial analysis solutions. For each processing step, the available tools and specific parameters used in published articles are provided and how these parameters affect the results is shown in the resource. All information used in the resource was manually extracted from related literature. An interactive website was designed for data retrieval, visualization, and download. By analyzing the included tools and literature, users can gain insights into the trends of single-cell studies and easily grasp the specific usage of a specific tool. SingleScan will facilitate the analysis of single-cell sequencing data and promote the development of new tools to meet the growing and diverse needs of the research community. The SingleScan database is publicly accessible via the website at http://cailab.labshare.cn/SingleScan .


Assuntos
Genoma , Software , Bases de Dados Factuais , Armazenamento e Recuperação da Informação , Transcriptoma
5.
BMC Genomics ; 24(1): 678, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950200

RESUMO

BACKGROUND: High oncogene expression in cancer cells is a major cause of rapid tumor progression and drug resistance. Recent cancer genome research has shown that oncogenes as well as regulatory elements can be amplified in the form of extrachromosomal DNA (ecDNA) or subsequently integrated into chromosomes as homogeneously staining regions (HSRs). These genome-level variants lead to the overexpression of the corresponding oncogenes, resulting in poor prognosis. Most existing detection methods identify ecDNA using whole genome sequencing (WGS) data. However, these techniques usually detect many false positive regions owing to chromosomal DNA interference. RESULTS: In the present study, an algorithm called "ATACAmp" that can identify ecDNA/HSRs in tumor genomes using ATAC-seq data has been described. High chromatin accessibility, one of the characteristics of ecDNA, makes ATAC-seq naturally enriched in ecDNA and reduces chromosomal DNA interference. The algorithm was validated using ATAC-seq data from cell lines that have been experimentally determined to contain ecDNA regions. ATACAmp accurately identified the majority of validated ecDNA regions. AmpliconArchitect, the widely used ecDNA detecting tool, was used to detect ecDNA regions based on the WGS data of the same cell lines. Additionally, the Circle-finder software, another tool that utilizes ATAC-seq data, was assessed. The results showed that ATACAmp exhibited higher accuracy than AmpliconArchitect and Circle-finder. Moreover, ATACAmp supported the analysis of single-cell ATAC-seq data, which linked ecDNA to specific cells. CONCLUSIONS: ATACAmp, written in Python, is freely available on GitHub under the MIT license: https://github.com/chsmiss/ATAC-amp . Using ATAC-seq data, ATACAmp offers a novel analytical approach that is distinct from the conventional use of WGS data. Thus, this method has the potential to reduce the cost and technical complexity associated ecDNA analysis.


Assuntos
DNA de Forma B , Neoplasias , Humanos , Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , DNA/genética , Oncogenes , Neoplasias/genética
6.
Mol Hortic ; 3(1): 14, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37789492

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the "Protein processing in endoplasmic reticulum" and "Cyanoamino acid metabolism" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.

7.
J Mol Model ; 29(5): 138, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055578

RESUMO

CONTEXT: In the replication of SARS-CoV-2, the main protease (Mpro/3CLpro) is significant. It is conserved in a number of novel coronavirus variations, and no known human proteases share its cleavage sites. Therefore, 3CLpro is an ideal target. In the report, we screened five potential inhibitors (1543, 2308, 3717, 5606, and 9000) of SARS-CoV-2 Mpro through a workflow. The calculation of MM-GBSA binding free energy showed that three of the five potential inhibitors (1543, 2308, 5606) had similar inhibitor effects to X77 against Mpro of SARS-CoV-2. In conclusion, the manuscript lays the groundwork for the design of Mpro inhibitors. METHODS: In the virtual screening phase, we used structure-based virtual screening (Qvina2.1) and ligand-based virtual screening (AncPhore). In the molecular dynamic simulation part, we used the Amber14SB + GAFF force field to perform molecular dynamic simulation of the complex for 100 ns (Gromacs2021.5) and performed MM-GBSA binding free energy calculation according to the simulation trajectory.


Assuntos
Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Simulação de Dinâmica Molecular , SARS-CoV-2 , Humanos , Endopeptidases , Simulação de Acoplamento Molecular , Farmacóforo , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia
8.
Comput Struct Biotechnol J ; 21: 2119-2128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968016

RESUMO

Esophageal cancer is the seventh most prevalent and the sixth most lethal cancer. Esophageal squamous cell carcinoma (ESCC) is one of the major esophageal cancer subtypes that accounts for 87 % of the total cases. However, its molecular mechanism remains unclear. Here, we present an integrated database for ESCC called ESCCdb, which includes a total of 56 datasets and published studies from the GEO, Xena or SRA databases and related publications. It helps users to explore a particular gene with multiple graphical and interactive views with one click. The results comprise expression changes across 20 datasets, copy number alterations in 11 datasets, somatic mutations from 12 papers, related drugs derived from DGIdb, related pathways, and gene correlations. ESCCdb enables directly cross-dataset comparison of a gene's mutations, expressions and copy number changes in multiple datasets. This allows users to easily assess the alterations in ESCC. Furthermore, survival analysis, drug-gene relationships, and results from whole-genome CRISPR/Cas9 screening can help users determine the clinical relevance, derive functional inferences, and identify potential drugs. Notably, ESCCdb also enables the exploration of the correlation structure and identification of potential key regulators for a process. Finally, we identified 789 consistently differential expressed genes; we summarized recurrently mutated genes and genes affected by significant copy number alterations. These genes may be stable biomarkers or important players during ESCC development. ESCCdb fills the gap between massive omics data and users' needs for integrated analysis and can promote basic and clinical ESCC research. The database is freely accessible at http://cailab.labshare.cn/ESCCdb.

9.
Mol Cell ; 83(1): 139-155.e9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521489

RESUMO

Nonsense mutations, accounting for >20% of disease-associated mutations, lead to premature translation termination. Replacing uridine with pseudouridine in stop codons suppresses translation termination, which could be harnessed to mediate readthrough of premature termination codons (PTCs). Here, we present RESTART, a programmable RNA base editor, to revert PTC-induced translation termination in mammalian cells. RESTART utilizes an engineered guide snoRNA (gsnoRNA) and the endogenous H/ACA box snoRNP machinery to achieve precise pseudouridylation. We also identified and optimized gsnoRNA scaffolds to increase the editing efficiency. Unexpectedly, we found that a minor isoform of pseudouridine synthase DKC1, lacking a C-terminal nuclear localization signal, greatly improved the PTC-readthrough efficiency. Although RESTART induced restricted off-target pseudouridylation, they did not change the coding information nor the expression level of off-targets. Finally, RESTART enables robust pseudouridylation in primary cells and achieves functional PTC readthrough in disease-relevant contexts. Collectively, RESTART is a promising RNA-editing tool for research and therapeutics.


Assuntos
Códon sem Sentido , RNA , Animais , Códon sem Sentido/genética , RNA/metabolismo , Códon de Terminação/genética , Mutação , Biossíntese de Proteínas , Mamíferos/metabolismo
10.
Nat Immunol ; 23(10): 1433-1444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138184

RESUMO

Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.


Assuntos
Colite , RNA de Transferência , Transferência Adotiva , Animais , Proliferação de Células/genética , Colite/genética , Camundongos , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Linfócitos T/metabolismo
12.
J Colloid Interface Sci ; 625: 761-773, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35772206

RESUMO

High-speed, low-cost and long-term water disinfection method is important for us to away from waterborne diseases. Nanowires-modified electrodes can inactivate microorganisms under low energy consumption. However, small processing capacity remains a major obstacle for practical application. In this study, we coated N-doped carbon layer on Cu2O NWs to improve the conductivity and stability for electrodes. Compared with Cu2O, the work functions of Cu2O-PANI structures is 3.623 eV, indicating the electrodes can prevent the recombination of electron-hole pairs and improve the carrier transport efficiency. In addition, Mulliken charge density showed that Cu2O-PANI structure reduce the oxidation trend of Cu atom and improve the stability of electrodes. Besides, the Cu2O NWs@NC electrodes showed excellent disinfection performance for E. coli and S. aureus, which can achieve 99.9% sterilizing rate under high flux (1200 mL min-1). Under this condition, the electrodes can continuously treat 576 L wastewater, which is about 10-folds handling capacity than others. Moreover, the bactericidal mechanism is synergistic of electroporation and reactive oxygen species, and the main ROS were electrons, OH and O2-. Therefore, this electrodes has a great prospect for rapid and stable water treatment system.


Assuntos
Nanofios , Carbono , Cobre/química , Desinfecção , Eletrodos , Escherichia coli , Nanofios/química , Staphylococcus aureus
14.
J Med Chem ; 65(5): 4085-4120, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35184554

RESUMO

The dramatic increase in the prevalence of multi-drug resistant Gram-negative bacterial infections and the simultaneous lack of new classes of antibiotics is projected to result in approximately 10 million deaths per year by 2050. We report on efforts to target the Gram-negative ATP-binding cassette (ABC) transporter MsbA, an essential inner membrane protein that transports lipopolysaccharide from the inner leaflet to the periplasmic face of the inner membrane. We demonstrate the improvement of a high throughput screening hit into compounds with on-target single digit micromolar (µM) minimum inhibitory concentrations against wild-type uropathogenic Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. A 2.98 Å resolution X-ray crystal structure of MsbA complexed with an inhibitor revealed a novel mechanism for inhibition of an ABC transporter. The identification of a fully encapsulated membrane binding site in Gram-negative bacteria led to unique physicochemical property requirements for wild-type activity.


Assuntos
Escherichia coli , Lipopolissacarídeos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia
15.
Cell Discov ; 7(1): 19, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785729

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a severe threat to humanity. Rapid and comprehensive analysis of both pathogen and host sequencing data is critical to track infection and inform therapies. In this study, we performed unbiased metatranscriptomic analysis of clinical samples from COVID-19 patients using a recently developed RNA-seq library construction method (TRACE-seq), which utilizes tagmentation activity of Tn5 on RNA/DNA hybrids. This approach avoids the laborious and time-consuming steps in traditional RNA-seq procedure, and hence is fast, sensitive, and convenient. We demonstrated that TRACE-seq allowed integrated characterization of full genome information of SARS-CoV-2, putative pathogens causing coinfection, antibiotic resistance, and host response from single throat swabs. We believe that the integrated information will deepen our understanding of pathogenesis and improve diagnostic accuracy for infectious diseases.

16.
Front Microbiol ; 12: 797841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35265048

RESUMO

Huanglongbing (HLB), caused by "Candidatus liberibacter asiaticus" (CaLas), is one of the most devastating diseases in citrus but its pathogenesis remains poorly understood. Here, we reported the role of the CaLasSDE115 (CLIBASIA_05115) effector, encoded by CaLas, during pathogen-host interactions. Bioinformatics analyses showed that CaLasSDE115 was 100% conserved in all reported CaLas strains but had sequence differences compared with orthologs from other "Candidatus liberibacter." Prediction of protein structures suggested that the crystal structure of CaLasSDE115 was very close to that of the invasion-related protein B (IalB), a virulence factor from Bartonella henselae. Alkaline phosphatase (PhoA) assay in E. coli further confirmed that CaLasSDE115 was a Sec-dependent secretory protein while subcellular localization analyses in tobacco showed that the mature protein of SDE115 (mSDE115), without its putative Sec-dependent signal peptide, was distributed in the cytoplasm and the nucleus. Expression levels of CaLasSDE115 in CaLas-infected Asian citrus psyllid (ACP) were much higher (∼45-fold) than those in CaLas-infected Wanjincheng oranges, with the expression in symptomatic leaves being significantly higher than that in asymptomatic ones. Additionally, the overexpression of mSDE115 favored CaLas proliferation during the early stages (2 months) of infection while promoting the development of symptoms. Hormone content and gene expression analysis of transgenic plants also suggested that overexpressing mSDE115 modulated the transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. Overall, our data indicated that CaLasSDE115 effector contributed to the early colonization of citrus by the pathogen and worsened the occurrence of Huanglongbing symptoms, thereby providing a theoretical basis for further exploring the pathogenic mechanisms of Huanglongbing disease in citrus.

17.
Elife ; 92020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32701057

RESUMO

Tn5-mediated transposition of double-strand DNA has been widely utilized in various high-throughput sequencing applications. Here, we report that the Tn5 transposase is also capable of direct tagmentation of RNA/DNA hybrids in vitro. As a proof-of-concept application, we utilized this activity to replace the traditional library construction procedure of RNA sequencing, which contains many laborious and time-consuming processes. Results of Transposase-assisted RNA/DNA hybrids Co-tagmEntation (termed 'TRACE-seq') are compared to traditional RNA-seq methods in terms of detected gene number, gene body coverage, gene expression measurement, library complexity, and differential expression analysis. At the meantime, TRACE-seq enables a cost-effective one-tube library construction protocol and hence is more rapid (within 6 hr) and convenient. We expect this tagmentation activity on RNA/DNA hybrids to have broad potentials on RNA biology and chromatin research.


Assuntos
DNA/genética , RNA/genética , Análise de Sequência/métodos , Transposases/genética , Células HEK293 , Humanos , Transposases/metabolismo
18.
Obes Surg ; 30(3): 931-940, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31916133

RESUMO

OBJECTIVE: The role of liver fatty acid-binding protein (FABP1) in obesity is presently unclear. We investigated the association of FABP1 with obesity and the changes noted after laparoscopic sleeve gastrectomy (LSG) in a Chinese population. METHODS: The cross-sectional analysis included 187 individuals: 65 had normal weight (18.5 ≤ body mass index (BMI) < 24 kg/m2), 59 were overweight (24 ≤ BMI < 28 kg/m2), and 63 were obese (BMI ≥ 28 kg/m2). We also assessed 25 severely obese patients (BMI, 38.58 ± 4.59 kg/m2) at baseline and at 3, 6, and 12 months after LSG to observe FABP1 levels. RESULTS: FABP1 levels in the obese (30.33 ± 23.59 ng/ml, **P < 0.01, ***P < 0.001) and overweight (18.96 ± 18.75 ng/ml, P = 0.471) individuals were significantly higher than those in normal weight individuals (14.30 ± 9.37 ng/ml). Linear regression analysis revealed that the FABP1 levels were positively correlated with BMI (R2 = 0.201, ***P < 0.001), ALT (R2 = 0.324, ***P < 0.001), AST (R2 = 0.387, ***P < 0.001), m-AST (R2 = 0.160, ***P < 0.001), γ-GT (R2 = 0.106, ***P < 0.001), DBil (R2 = 0.078, ***P < 0.001), UA (R2 = 0.111, ***P < 0.001), FBG (R2 = 0.066, ***P < 0.001), LDL (R2 = 0.042, **P = 0.005), and were negatively correlated with HDL (R2 = 0.051, **P = 0.002). After adjusting for age, sex, ALT, AST, TC, TG, HDL, LDL, FBG, and UA, FABP1 was independently correlated with BMI (*P < 0.05). With decreasing BMI after LSG, the FABP1 levels (29.46 ± 21.19 ng/ml, P = 0.463, P = 0.06, *P < 0.05) also decreased at 3 (23.00 ± 22.77 ng/ml), 6 (14.41 ± 15.48 ng/ml), and 12 months (11.55 ± 3.27 ng/ml). CONCLUSION: Serum FABP1 levels are closely correlated with obesity and many metabolic factors, and we found that with the decrease in BMI after LSG, the FABP1 levels also progressively decreased postoperatively. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: ChiCTR-OCS-12002381.


Assuntos
Proteínas de Ligação a Ácido Graxo/sangue , Gastrectomia , Obesidade Mórbida/sangue , Obesidade Mórbida/cirurgia , Obesidade/sangue , Adulto , Povo Asiático , Índice de Massa Corporal , China/epidemiologia , Estudos Transversais , Feminino , Seguimentos , Gastrectomia/métodos , Gastrectomia/estatística & dados numéricos , Humanos , Laparoscopia/métodos , Laparoscopia/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/etnologia , Obesidade Mórbida/diagnóstico , Obesidade Mórbida/etnologia , Período Pós-Operatório
19.
Elife ; 82019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30638447

RESUMO

Cell-cell communication via gap junctions regulates a wide range of physiological processes by enabling the direct intercellular electrical and chemical coupling. However, the in vivo distribution and function of gap junctions remain poorly understood, partly due to the lack of non-invasive tools with both cell-type specificity and high spatiotemporal resolution. Here, we developed PARIS (pairing actuators and receivers to optically isolate gap junctions), a new fully genetically encoded tool for measuring the cell-specific gap junctional coupling (GJC). PARIS successfully enabled monitoring of GJC in several cultured cell lines under physiologically relevant conditions and in distinct genetically defined neurons in Drosophila brain, with ~10 s temporal resolution and sub-cellular spatial resolution. These results demonstrate that PARIS is a robust, highly sensitive tool for mapping functional gap junctions and study their regulation in both health and disease.


Assuntos
Junções Comunicantes/metabolismo , Optogenética , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Drosophila , Células HEK293 , Células HeLa , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Neurônios/citologia , Neurônios/metabolismo
20.
Org Lett ; 11(7): 1583-6, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19260703

RESUMO

Highly enantioselective synthesis of nitrocyclopropanes was achieved via the organocatalytic conjugate addition of dimethyl bromomalonate to nitroalkenes and the consequent intramolecular cyclopropanation. 6'-Demethyl quinine was found to be the efficient catalyst. Excellent enantioselectivities, diastereoselectivities, and good yields were obtained for a variety of aryl or heteroaryl nitroethylenes.


Assuntos
Alcenos/química , Ciclopropanos/síntese química , Malonatos/química , Nitrocompostos/síntese química , Catálise , Técnicas de Química Combinatória , Ciclopropanos/química , Estrutura Molecular , Nitrocompostos/química , Quinina/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA