Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 15(1): 3253, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627396

RESUMO

Plants, as sessile organisms, deploy transcriptional dynamics for adapting to extreme growth conditions such as cold stress. Emerging evidence suggests that chromatin architecture contributes to transcriptional regulation. However, the relationship between chromatin architectural dynamics and transcriptional reprogramming in response to cold stress remains unclear. Here, we apply a chemical-crosslinking assisted proximity capture (CAP-C) method to elucidate the fine-scale chromatin landscape, revealing chromatin interactions within gene bodies closely associated with RNA polymerase II (Pol II) densities across initiation, pausing, and termination sites. We observe dynamic changes in chromatin interactions alongside Pol II activity alterations during cold stress, suggesting local chromatin dynamics may regulate Pol II activity. Notably, cold stress does not affect large-scale chromatin conformations. We further identify a comprehensive promoter-promoter interaction (PPI) network across the genome, potentially facilitating co-regulation of gene expression in response to cold stress. Our study deepens the understanding of chromatin conformation-associated gene regulation in plant response to cold.


Assuntos
Arabidopsis , Cromatina , Cromatina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas/genética , Transcrição Gênica
2.
J Proteomics ; 291: 105046, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37981007

RESUMO

Crustaceans are the champions of mineral mobilization and deposition in the animal kingdom due to their unique ability to rapidly and periodically mineralize and demineralize their exoskeletons. They are commonly covered with mineralized exoskeletons for protection and regularly molt throughout their lives. Mineralized crustacean exoskeletons are formed under the control of macromolecules especially matrix proteins but the types of matrix proteins are understudied compared to those in molluscan shells. This gap hinders our understanding of their evolutionary paths compared with those of molluscs. Here, we comprehensively analyzed matrix proteins in the exoskeleton of two crabs, one shrimp, and one crayfish and resulted in a major improvement (∼10-fold) in the identification of biomineralization proteins compared to conventional methods for decapod crustaceans. By a comparison with well-studied molluscan biomineralization proteins, we found that decapod crustaceans evolved novel proteins to form mineralized exoskeletons while sharing some proteins with those of molluscs. Our study sheds light on their evolution and adaption to different environment for exoskeleton formation and provides a foundation for further studies of mineralization in crustaceans under normal and climate-changed conditions. SIGNIFICANCE: Most crustaceans have mineralized exoskeletons as protection. How they form these hierarchical structures is still unclear. This is due partially to the understudied matrix proteins in the minerals. This study filled such a gap by using proteomic analysis of matrix proteins from four decapod crustacean exoskeletons. Many novel proteins were discovered which enabled a solid comparison with those of molluscs. By comparison, we proposed that crustaceans evolved novel proteins to form mineralized exoskeletons while sharing some proteins with those of molluscs. This is useful for us to understand the evolution of two major biomineralized phylum.


Assuntos
Biomineralização , Decápodes , Animais , Proteômica , Minerais , Moluscos
3.
Environ Sci Technol ; 57(41): 15314-15335, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37703436

RESUMO

Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs). A collection of 188 compounds from four categories, 44 NPAHs, 36 OPAHs, 56 APAHs, and 52 XPAHs, has been compiled from 114 studies that documented the environmental presence of PAH derivatives. These compounds exhibited weighted average air concentrations that varied from a lower limit of 0.019 pg/m3 to a higher threshold of 4060 pg/m3. Different analytical methods utilizing comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC × GC-TOF-MS), gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS), comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC-QQQ-MS), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), that adopted untargeted strategies for the identification of PAH derivatives are also reviewed here. Additionally, an in-depth analysis of biotransformation patterns for each category is provided, including the likelihood of specific biotransformation reaction types. For the toxicity, we primarily summarized key metabolic activation pathways, which could result in the formation of reactive metabolites capable of covalently bonding with DNA and tissue proteins, and potential health outcomes such as carcinogenicity and genotoxicity, oxidative stress, inflammation and immunotoxicity, and developmental toxicity that might be mediated by the aryl hydrocarbon receptor (AhR). Finally, we pinpoint research challenges and emphasize the need for further studies on identifying PAH derivatives, tracking external exposure levels, evaluating internal exposure levels and associated toxicity, clarifying exposure routes, and considering mixture exposure effects. This review aims to provide a broad understanding of PAH derivatives' identification, environmental occurrence, human exposure, biotransformation, and toxicity, offering a valuable reference for guiding future research in this underexplored area.

4.
BMC Biol ; 21(1): 56, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941615

RESUMO

BACKGROUND: Analysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. RESULTS: Here we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), including Gossypium arboreum, Gossypium raimondii, and Gossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved in Gossypioides and Gossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestral in-cis interactions. CONCLUSIONS: Our findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.


Assuntos
Cromatina , Gossypium , Animais , Cromatina/genética , Gossypium/genética , Evolução Molecular , Genoma , Genômica
5.
Environ Sci Pollut Res Int ; 30(22): 61271-61289, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34773583

RESUMO

Access to financial services is regarded as one of the most pressing issues confronting communities worldwide sequel to the COVID-19 pandemic. In this regard, FinTech applications such as mobile financial service (MFS) play an essential role in building resilience during the pandemic. Hence, the aim of the study is to investigate the role of MFS platforms in economic resilience by empirically evaluating the determinants that influence the intention of Bangladeshi users toward adopting MFS platforms during the COVID-19 pandemic, through an extension of the Unified Theory of Acceptance and Use of Technology (UTAUT). Using the core structures of the UTAUT, the theoretical model was constructed based on the consumption attributes of financial services such as perceived value, as well as additional situational factors from the extended valence framework, including risk and trust. To test the model, data was obtained from 227 potential MFS users in Bangladesh with the aid of a structured questionnaire survey. Subsequently, the Structural Equation Modeling (SEM) approach was used to analyze the data. The findings showed that social influence, perceived trust, and perceived value are strongly related to the intention of users to adopt MFS platforms, whereas, perceived risk, performance expectancy, and effort expectancy were observed to influence users' perceived value of the MFS platforms during the COVID-19 pandemic. Interestingly, the study results indicated that the users' perceived risk did not influence their intention to adopt MFS platforms during the pandemic. Therefore, the suggested adoption of the MFS framework during and after the pandemic could contribute to the existing research on the adoption of information technology (IT) through the expansion of the UTAUT, in which the performance and effort expectancy of users influence their intention to indirectly adopt MFS through perceived value. Finally, the significant policy implications and future research directions are further addressed.


Assuntos
COVID-19 , Pandemias , Humanos , Intenção , Aceitação pelo Paciente de Cuidados de Saúde , Modelos Teóricos , Inquéritos e Questionários
6.
Front Nutr ; 9: 894765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505256

RESUMO

The purpose of the study is to determine the factors of online fast food-buying intention among Bangladeshi Millennials during the COVID-19 pandemic. The study adopted the Value-Attitude-Behavior (VAB) model and designed it as a higher-order constructs model to predict buying intention. Using a quantitative method (i.e., cross-sectional survey), data was collected from 325 respondents via a structured questionnaire and subsequently analyzed using Structural Equation Modeling (SEM) through AMOS software. The findings of the study revealed that convenience and food quality generate utilitarian values, while subjective norms and novelty-seeking form hedonic values. Also, utilitarian and hedonic values significantly affect cognitive and affective attitudes. As opposed to food quality, the cognitive attitude, affective attitude, self-identity, and subjective norms were observed to affect behavioral intention, with affective attitude producing the strongest association, albeit with the high explanatory power of the model. Consequently, this study offers a number of theoretical and policy implications to design better interventions that address public health regarding fast food consumption.

7.
J Integr Plant Biol ; 64(12): 2396-2410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36194511

RESUMO

Associations between 3D chromatin architectures and epigenetic modifications have been characterized in animals. However, any impact of DNA methylation on chromatin architecture in plants is understudied, which is confined to Arabidopsis thaliana. Because plant species differ in genome size, composition, and overall chromatin packing, it is unclear to what extent findings from A. thaliana hold in other species. Moreover, the incomplete chromatin architectural profiles and the low-resolution high-throughput chromosome conformation capture (Hi-C) data from A. thaliana have hampered characterizing its subtle chromatin structures and their associations with DNA methylation. We constructed a high-resolution Hi-C interaction map for the null OsMET1-2 (the major CG methyltransferase in rice) mutant (osmet1-2) and isogenic wild-type rice (WT). Chromatin structural changes occurred in osmet1-2, including intra-/inter-chromosomal interactions, compartment transition, and topologically associated domains (TAD) variations. Our findings provide novel insights into the potential function of DNA methylation in TAD formation in rice and confirmed DNA methylation plays similar essential roles in chromatin packing in A. thaliana and rice.


Assuntos
Arabidopsis , Oryza , Animais , Oryza/genética , Mutação com Perda de Função , Arabidopsis/genética , Cromatina , Metiltransferases , Plantas/genética
8.
PLoS One ; 17(3): e0264585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239696

RESUMO

Studying the linkage between manufacturing industry and logistics industry is conducive to explore and improve the efficiency of the common development of them. In order to study the interaction of logistics industry on the development of manufacturing industry and the development of two-industry-linkage, it first calculates the high-quality development level of logistics industry and manufacturing industry, then uses the coupling coordination model to theoretically analyze and empirically test the coupling and coordinated development level of high-quality development of logistics industry and manufacturing industry from three aspects: coupling degree, coordination degree and coupling coordination degree, and based on the perspective of integration field theory, it takes the three basic synthetic fields of logistics integrator, logistics base-nuclear and logistics connection-key as the analysis dimension, PVAR model was introduced for in-depth analysis the impact of logistics industry on manufacturing industry and the level of the two-industry-linkage. It was found that the high-quality development of China's logistics industry and manufacturing industry is close on the whole, and the development trend is consistent, the high-quality development of them is mainly caused by the change of scale, but there is no obvious change in technical efficiency, which also provides a way for the high-quality development of the two-industry-linkage in the future. The two-industry-linkage mostly belongs to the situation of low-level mutual restriction, which has not yet reached a high level of mutual promotion, resulting in the overall coupling coordination degree basically in a state of barely coordination. The development of logistics industry and manufacturing industry need to go through certain practice and running in, when there is an error matching between the two, the logistics industry will inhibit the two-industry-linkage. When the economy develops to a certain extent, the expansion of the logistics system scale to the level of the two-industry-linkage is not necessarily beneficial, blindly exceeding the demand for logistics investment will cause a waste of resources, which is not conducive to the high-quality development of the logistics industry and the coupling and coordinated development of the two industries. In the long run, the change of the logistics basic-nuclear capacity, the logistics integrator scale and logistics connection-key level will have a positive impact on the change of green total factor productivity in manufacturing industry.


Assuntos
Indústrias , Indústria Manufatureira , China , Desenvolvimento Econômico , Eficiência , Investimentos em Saúde
9.
Environ Sci Pollut Res Int ; 29(7): 10138-10156, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34510347

RESUMO

Improving the logistics ecological efficiency (LEE) has become a significant part of ensuring a sustainable development and tackling environmental pollution. Previous studies in the logistics industry seldom considered air pollutants and the association of spatial information. Therefore, innovatively considering SO2, NOx, and PM, this study adopted the super-SBM-undesirable model to calculate the LEE of 30 provinces in China from 2005 to 2019 and, thereafter, developed information-based matrix to explore its influencing factors by using the spatial Dubin model. The results indicated that (1) the overall LEE was low with the average of 0.657, presenting a three-stage trend of "decreasing first, then rising, and later stable," and significant regional differences with the decreasing gradient pattern of the "Eastern-Central-Western." (2) A spatial directionality distributed from the northeast to southwest and a significant spatial autocorrelation were observed. (3) The LEE had a significant positive spillover effect. Industrial structure, urbanization level, environmental regulation, and technological innovation level had a positive impact on the local LEE, and industrial structure displayed the most promoting effects. Energy intensity, economic level, energy structure, and opening level had a significant effect on the local LEE with varying degree of inhibition. Local energy intensity and environmental regulation had a positive influence on the LEE in neighboring areas, while local opening level had inhibiting effects. In addition, policy recommendations for enhancing the LEE were made.


Assuntos
Desenvolvimento Econômico , Urbanização , China , Eficiência , Análise Espacial
10.
Dev Cell ; 57(1): 19-31.e6, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34822788

RESUMO

The interaction between chromatin and the nuclear lamina (NL) is intrinsically important to the establishment of three-dimensional chromatin architecture and spatiotemporal regulation of gene expression. However, critical regulators involved in this process are poorly understood in plants. Here, we report that Arabidopsis PNET2 and its two homologs are bona fide inner nuclear membrane proteins and integral components of the NL. PNET2s physically interact with the plant nucleoskeleton and engage nucleosome-enriched chromatin at the nuclear periphery. Loss of all three PNET2s leads to severely disrupted growth and development, concomitant activation of abiotic and biotic stress responses, and ultimate lethality in Arabidopsis. The pent2 triple mutant also displays drastic transcriptome changes accompanied by a globally altered chromatin architecture revealed by HiC analysis. Our study identified PNET2 as an inner nuclear membrane (INM) component of the NL, which associates with chromatin and play a critical role in orchestrating gene expression and chromatin organization in plants.


Assuntos
Cromatina/genética , Lâmina Nuclear/fisiologia , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Estruturas Cromossômicas/genética , Estruturas Cromossômicas/fisiologia , Cromossomos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma/genética , Laminas/genética , Membrana Nuclear/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
Front Plant Sci ; 12: 779598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899806

RESUMO

Breeding of stress-tolerant plants is able to improve crop yield under stress conditions, whereas CRISPR/Cas9 genome editing has been shown to be an efficient way for molecular breeding to improve agronomic traits including stress tolerance in crops. However, genes can be targeted for genome editing to enhance crop abiotic stress tolerance remained largely unidentified. We have previously identified abscisic acid (ABA)-induced transcription repressors (AITRs) as a novel family of transcription factors that are involved in the regulation of ABA signaling, and we found that knockout of the entire family of AITR genes in Arabidopsis enhanced drought and salinity tolerance without fitness costs. Considering that AITRs are conserved in angiosperms, AITRs in crops may be targeted for genome editing to improve abiotic stress tolerance. We report here that mutation of GmAITR genes by CRISPR/Cas9 genome editing leads to enhanced salinity tolerance in soybean. By using quantitative RT-PCR analysis, we found that the expression levels of GmAITRs were increased in response to ABA and salt treatments. Transfection assays in soybean protoplasts show that GmAITRs are nucleus proteins, and have transcriptional repression activities. By using CRISPR/Cas9 to target the six GmAITRs simultaneously, we successfully generated Cas9-free gmaitr36 double and gmaitr23456 quintuple mutants. We found that ABA sensitivity in these mutants was increased. Consistent with this, ABA responses of some ABA signaling key regulator genes in the gmaitr mutants were altered. In both seed germination and seedling growth assays, the gmaitr mutants showed enhanced salt tolerance. Most importantly, enhanced salinity tolerance in the mutant plants was also observed in the field experiments. These results suggest that mutation of GmAITR genes by CRISPR/Cas9 is an efficient way to improve salinity tolerance in soybean.

12.
Natl Sci Rev ; 8(5): nwaa277, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34691642

RESUMO

Allopolyploidy is an important process in plant speciation, yet newly formed allopolyploid species typically suffer from extreme genetic bottlenecks. One escape from this impasse might be homoeologous meiotic pairing, during which homoeologous exchanges (HEs) generate phenotypically variable progeny. However, the immediate genome-wide patterns and resulting phenotypic diversity generated by HEs remain largely unknown. Here, we analyzed the genome composition of 202 phenotyped euploid segmental allopolyploid individuals from the fourth selfed generation following chromosomal doubling of reciprocal F1 hybrids of crosses between rice subspecies, using whole-genome sequencing. We describe rampant occurrence of HEs that, by overcoming incompatibility or conferring superiority of hetero-cytonuclear interactions, generate extensive and individualized genomic mosaicism across the analyzed tetraploids. We show that the resulting homoeolog copy number alteration in tetraploids affects known-function genes and their complex genetic interactions, in the process creating extraordinary phenotypic diversity at the population level following a single initial hybridization. Our results illuminate the immediate genomic landscapes possible in a tetraploid genomic environment, and underscore HE as an important mechanism that fuels rapid phenotypic diversification accompanying the initial stages of allopolyploid evolution.

13.
Genes (Basel) ; 11(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255795

RESUMO

Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Genoma de Planta/genética , Triticum/genética , Evolução Molecular , Genótipo , Poliploidia , Tetraploidia
14.
Plant J ; 101(1): 188-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529551

RESUMO

CG methylation (m CG) is essential for preserving genome stability in mammals, but this link remains obscure in plants. OsMET1-2, a major rice DNA methyltransferase, plays critical roles in maintaining m CG in rice. Null mutation of OsMET1-2 causes massive CG hypomethylation, rendering the mutant suitable to address the role of m CG in maintaining genome integrity in plants. Here, we analyzed m CG dynamics and genome stability in tissue cultures of OsMET1-2 homozygous (-/-) and heterozygous (+/-) mutants, and isogenic wild-type (WT). We found m CG levels in cultures of -/- were substantially lower than in those of WT and +/-, as expected. Unexpectedly, m CG levels in 1- and 3-year cultures of -/- were 77.6% and 48.7% higher, respectively, than in shoot, from which the cultures were initiated, suggesting substantial regain of m CG in -/- cultures, which contrasts to the general trend of m CG loss in all WT plant tissue cultures hitherto studied. Transpositional burst of diverse transposable elements (TEs) occurred only in -/- cultures, although no elevation of genome-wide mutation rate in the form of single nucleotide polymorphisms was detected. Altogether, our results establish an essential role of m CG in retaining TE immobility and hence genome stability in rice and likely in plants in general.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/genética , Oryza/genética , Proteínas de Plantas/genética
15.
Plant J ; 94(6): 1141-1156, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29660196

RESUMO

The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Cromossomos de Plantas/genética , Oryza/genética , Cromatina/metabolismo , Cromossomos de Plantas/fisiologia , Epigênese Genética/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla
16.
Plant Physiol ; 175(2): 828-847, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28821592

RESUMO

Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops.


Assuntos
Aneuploidia , Cromossomos de Plantas/genética , Genoma de Planta/genética , Transcriptoma , Triticum/genética , Mecanismo Genético de Compensação de Dose , Regulação da Expressão Gênica de Plantas , Cariótipo , Fenótipo , Poliploidia
17.
J Plant Physiol ; 215: 65-72, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28582731

RESUMO

Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu-2µ∆13 and FLIPglu-600µΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu-2µΔ13 was approximately 10.05µM, and that for FLIPglu-600µΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu-2µΔ13 in a stimulus-specific manner, but not in FLIPglu-600µΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2-20µM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
Plant Genome ; 10(3)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29293814

RESUMO

The allopolyploid speciation process faces the genomic challenge of stoichiometric disruption caused by merging biparental nuclear genomes with only one (usually maternal) of the two sets of progenitor cytoplasmic genomes. The photosynthetic protein 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is composed of nuclear-encoded small subunits (SSUs) and plastome-encoded large subunits (LSUs), making it an ideal enzyme to explore the evolution process of cytonuclear accommodation. We investigated the variation of SSUs and their encoding genes in synthetic nascent rice ( L.) allotetraploid lineages, formed from the parental subspecies and of Asian rice. The evolution of genes in rice subspecies involves both mutation and concerted homogenization. Within reciprocal rice hybrids and allopolyploids, there was no consistent pattern of biased expression of alleles or homeologs, nor was there biased gene conversion favoring the maternal gene copies. Instead, we observed an apparently stochastic pattern of intergenomic gene conversions and biased expression of homeologs. We conclude that in young rice allopolyploids, cytonuclear coordination either is not selectively favored because of high parental sequence similarity or because there has been insufficient time for subtle selective effects to become observable.


Assuntos
Núcleo Celular/enzimologia , Citoplasma/enzimologia , Oryza/genética , Ribulose-Bifosfato Carboxilase/genética , Alelos , Genes de Plantas , Oryza/enzimologia , Poliploidia
19.
Front Plant Sci ; 6: 773, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442082

RESUMO

Heat shock proteins (HSPs) perform a fundamental role in protecting plants against abiotic stresses. Previous studies have made great efforts in the functional analysis of individual family members, but there has not yet been an overall analysis or expression profiling of the HSP70 gene family in soybeans (Glycine max L.). In this study, an investigation of the soybean genome revealed 61 putative HSP70 genes, which were evaluated. These genes were classified into eight sub-families, denoted I-VIII, based on a phylogenetic analysis. In each sub-family, the constituent parts of the gene structure and motif were relatively conserved. These GmHSP70 genes were distributed unequally on 17 of the 20 chromosomes. The analysis of the expression profiles showed that 53 of the 61 GmHSP70 genes were differentially expressed across the 14 tissues. However, most of the GmHSP70s were differentially expressed in a tissue-specific expression pattern. Furthermore, the expression of some of the duplicate genes was partially redundant, while others showed functional diversity. The quantitative real-time PCR (qRT-PCR) analysis of the 61 soybean HSP70 genes confirmed their stress-inducible expression patterns under both drought and heat stress. These findings provide a thorough overview of the evolution and modification of the GmHSP70 gene family, which will help to determine the functional characteristics of the HSP70 genes in soybean growth and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA