Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.515
Filtrar
1.
Endosc Ultrasound ; 13(2): 100-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947749

RESUMO

Background and Objective: To compare the efficacy of EUS-guided celiac plexus neurolysis (CPN) and celiac plexus irradiation with iodine-125 (125I) seeds with absolute ethanol for relieving pain in patients with advanced pancreatic cancer. Methods: We retrospectively analyzed data of 81 patients with advanced pancreatic cancer who underwent EUS-CPN or EUS-125I implantation between January 2017 and December 2020. Postoperative pain was assessed using visual analog scale (VAS) scores; self-assessments of quality of life and the median survival time were compared between the 2 groups. Results: EUS-CPN and 125I implantation were performed in 43 and 38 patients, respectively. Postoperative VAS scores were significantly lower than the preoperative levels in both groups. One week after the operation, 26 patients (60.5%) in the EUS-CPN group achieved partial pain relief, whereas no patients in the EUS-125I seed group experienced pain relief. However, after 4 weeks postoperatively, VAS scores had decreased, and the rate of partial pain relief was higher for EUS-125I seeds than for EUS-CPN. Self-assessments of quality of life were similar in both groups during the first 1 month after the procedure. Conclusions: Both EUS-CPN and EUS-125I seeds can safely and effectively relieve pain in patients with advanced pancreatic cancer. Although EUS-125I seeds take additional time to show effects, the extent and duration of pain relief are better compared with CPN, and interestingly, the median survival time was different.

2.
Mar Genomics ; 76: 101112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009493

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio­sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.


Assuntos
Alteromonas , Genoma Bacteriano , Compostos de Sulfônio , Compostos de Sulfônio/metabolismo , Alteromonas/genética , Água do Mar/microbiologia , Sulfetos
3.
Front Microbiol ; 15: 1412263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979536

RESUMO

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease triggered by a novel bunyavirus (SFTSV). Characterized by fever, thrombocytopenia, leukocytopenia, and multiple organ dysfunction manifestations, its primary mode of transmission is through tick bites. Despite the critical role of lipid metabolism in viral infections, the role of lipids in SFTS remains unclear. Methods: This retrospective study analyzed 602 patients with SFTS treated at the Shandong Public Health Clinical Center from January 2021 to December 2023. Based on the endpoint events, patients were classified into survival (S) and death (D) groups. The S group was further classified into non-critical (non-C) and critical (C) groups based on symptoms. All patients were followed up for at least 28 days after admission. Propensity score matching, multivariable logistic regression, survival analysis, time trend analysis, and mediation analysis were conducted to assess the association between LDL-C levels and prognosis in SFTS. Results: The serum LDL-C levels on admission were significantly lower in the D and C groups than in the S and non-C groups. The logistic regression models indicated a potential association between LDL-C levels and a poor prognosis in SFTS. The restricted cubic spline showed a unidirectional trend between LDL-C levels and mortality, with a cutoff value of 1.59 mmol/L. The survival analysis revealed higher and earlier mortality in the low-LDL-C group than in the high-LDL-C group. The trends over 28 days post-admission showed that the serum LDL-C levels gradually increased in SFTS, with a favorable prognosis. Finally, the mediation analysis indicated that low LDL-C levels are associated with mortality through poor hepatic, cardiac, and coagulation functions. Conclusion: Low LDL-C levels are potentially associated with a poor prognosis in SFTS.

4.
Nat Microbiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862603

RESUMO

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.

5.
BMC Cancer ; 24(1): 670, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824514

RESUMO

BACKGROUND: An accurate and non-invasive approach is urgently needed to distinguish tuberculosis granulomas from lung adenocarcinomas. This study aimed to develop and validate a nomogram based on contrast enhanced-compute tomography (CE-CT) to preoperatively differentiate tuberculosis granuloma from lung adenocarcinoma appearing as solitary pulmonary solid nodules (SPSN). METHODS: This retrospective study analyzed 143 patients with lung adenocarcinoma (mean age: 62.4 ± 6.5 years; 54.5% female) and 137 patients with tuberculosis granulomas (mean age: 54.7 ± 8.2 years; 29.2% female) from two centers between March 2015 and June 2020. The training and internal validation cohorts included 161 and 69 patients (7:3 ratio) from center No.1, respectively. The external testing cohort included 50 patients from center No.2. Clinical factors and conventional radiological characteristics were analyzed to build independent predictors. Radiomics features were extracted from each CT-volume of interest (VOI). Feature selection was performed using univariate and multivariate logistic regression analysis, as well as the least absolute shrinkage and selection operator (LASSO) method. A clinical model was constructed with clinical factors and radiological findings. Individualized radiomics nomograms incorporating clinical data and radiomics signature were established to validate the clinical usefulness. The diagnostic performance was assessed using the receiver operating characteristic (ROC) curve analysis with the area under the receiver operating characteristic curve (AUC). RESULTS: One clinical factor (CA125), one radiological characteristic (enhanced-CT value) and nine radiomics features were found to be independent predictors, which were used to establish the radiomics nomogram. The nomogram demonstrated better diagnostic efficacy than any single model, with respective AUC, accuracy, sensitivity, and specificity of 0.903, 0.857, 0.901, and 0.807 in the training cohort; 0.933, 0.884, 0.893, and 0.892 in the internal validation cohort; 0.914, 0.800, 0.937, and 0.735 in the external test cohort. The calibration curve showed a good agreement between prediction probability and actual clinical findings. CONCLUSION: The nomogram incorporating clinical factors, radiological characteristics and radiomics signature provides additional value in distinguishing tuberculosis granuloma from lung adenocarcinoma in patients with a SPSN, potentially serving as a robust diagnostic strategy in clinical practice.


Assuntos
Adenocarcinoma de Pulmão , Granuloma , Neoplasias Pulmonares , Nomogramas , Tomografia Computadorizada por Raios X , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Diagnóstico Diferencial , Granuloma/diagnóstico por imagem , Granuloma/patologia , Idoso , Tuberculose Pulmonar/diagnóstico por imagem , Período Pré-Operatório , Radiômica
6.
J Cheminform ; 16(1): 67, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849874

RESUMO

Identification of interactions between chemical compounds and proteins is crucial for various applications, including drug discovery, target identification, network pharmacology, and elucidation of protein functions. Deep neural network-based approaches are becoming increasingly popular in efficiently identifying compound-protein interactions with high-throughput capabilities, narrowing down the scope of candidates for traditional labor-intensive, time-consuming and expensive experimental techniques. In this study, we proposed an end-to-end approach termed SPVec-SGCN-CPI, which utilized simplified graph convolutional network (SGCN) model with low-dimensional and continuous features generated from our previously developed model SPVec and graph topology information to predict compound-protein interactions. The SGCN technique, dividing the local neighborhood aggregation and nonlinearity layer-wise propagation steps, effectively aggregates K-order neighbor information while avoiding neighbor explosion and expediting training. The performance of the SPVec-SGCN-CPI method was assessed across three datasets and compared against four machine learning- and deep learning-based methods, as well as six state-of-the-art methods. Experimental results revealed that SPVec-SGCN-CPI outperformed all these competing methods, particularly excelling in unbalanced data scenarios. By propagating node features and topological information to the feature space, SPVec-SGCN-CPI effectively incorporates interactions between compounds and proteins, enabling the fusion of heterogeneity. Furthermore, our method scored all unlabeled data in ChEMBL, confirming the top five ranked compound-protein interactions through molecular docking and existing evidence. These findings suggest that our model can reliably uncover compound-protein interactions within unlabeled compound-protein pairs, carrying substantial implications for drug re-profiling and discovery. In summary, SPVec-SGCN demonstrates its efficacy in accurately predicting compound-protein interactions, showcasing potential to enhance target identification and streamline drug discovery processes.Scientific contributionsThe methodology presented in this work not only enables the comparatively accurate prediction of compound-protein interactions but also, for the first time, take sample imbalance which is very common in real world and computation efficiency into consideration simultaneously, accelerating the target identification and drug discovery process.

7.
Int J Nanomedicine ; 19: 5739-5761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882545

RESUMO

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have the capability to induce specific protein degradation. While playing a revolutionary role in effectively degrading the protein of interest (POI), PROTACs encounter certain limitations that impede their clinical translation. These limitations encompass off-target effects, inadequate cell membrane permeability, and the hook effect. The advent of nanotechnology presents a promising avenue to surmount the challenges associated with conventional PROTACs. The utilization of nano-proteolysis targeting chimeras (nano-PROTACs) holds the potential to enhance specific tissue accumulation, augment membrane permeability, and enable controlled release. Consequently, this approach has the capacity to significantly enhance the controllable degradation of target proteins. Additionally, they enable a synergistic effect by combining with other therapeutic strategies. This review comprehensively summarizes the structural basis, advantages, and limitations of PROTACs. Furthermore, it highlights the latest advancements in nanosystems engineered for delivering PROTACs, as well as the development of nano-sized PROTACs employing nanocarriers as linkers. Moreover, it delves into the underlying principles of nanotechnology tailored specifically for PROTACs, alongside the current prospects of clinical research. In conclusion, the integration of nanotechnology into PROTACs harbors vast potential in enhancing the anti-tumor treatment response and expediting clinical translation.


Assuntos
Neoplasias , Proteólise , Humanos , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Nanopartículas/química , Nanomedicina/métodos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
8.
Org Lett ; 26(27): 5705-5712, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38934776

RESUMO

Selenosulfones, as pivotal pharmaceutical molecule frameworks, have become a research hotspot in modern organic synthesis due to their vital need for efficient preparation. Herein, we have developed an iron-catalyzed four-component controllable radical tandem reaction of allenes involving cycloketone oxime esters, 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO), and diphenyl diselenides for the synthesis of complex selenosulfones. This is the first case of achieving the 1,2-selenosulfonylation of allenes via a radical process, wherein precise control of radical rates and polarity matching enhance high regioselective conversion. The reaction conditions are ecofriendly and mild with step-efficiency by forming two new C-S bonds and one C-Se bond in one pot. Moreover, the 1,2-selenosulfonylation of allenes can be achieved by replacing cycloketone oxime esters with aryldiazonium tetrafluoroborates in this system.

10.
Biomed Pharmacother ; 176: 116880, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850652

RESUMO

Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.


Assuntos
Doença de Alzheimer , Exossomos , Metais Pesados , MicroRNAs , Microglia , Doenças Neuroinflamatórias , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/induzido quimicamente , Humanos , Exossomos/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Metais Pesados/toxicidade , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Microglia/metabolismo , Microglia/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
11.
Huan Jing Ke Xue ; 45(6): 3341-3351, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897756

RESUMO

In the context of sustainable development, it is important to thoroughly investigate the coupling mechanism between China's eco-environmental quality and human activities, as well as identify the influencing factors, in order to provide scientific references for achieving sustainable development goals in China. This study applied trend analysis, coupling coordination degree, LMDI, and optimal parameter geographic detector models to explore and evaluate the coupling mechanism between China's eco-environmental quality and human activities. The findings of the study were as follows:① During the research period, there was a growth trend in China's coupling coordination degree, human activities, and eco-environmental quality. Human activities and coupling coordination degree exhibited a spatial differentiation pattern with the Hu Line as the boundary, showing an "east high, west low" distribution. The eco-environmental quality demonstrated a "south high, north low" differentiation pattern. ② The overall trend of China's coupling coordination type transformation was shifting from lower-level to higher-level coordination types. ③ Based on the geographic detector and LMDI models, the dominant factors influencing the coupling coordination degree in most provinces east of the Hu Line were social and economic factors, as well as the comprehensive coordination index. In contrast, the dominant factors in most provinces west of the Hu Line were natural environmental factors and coupling degree. ④ The evaluation of the impact of changes in human activities on eco-environmental quality revealed that the regions east of the Hu Line were mainly characterized by favorable development and effective protection, whereas the regions west of the line were mainly characterized by destructive development and ineffective protection. It is suggested that the regions on both sides of the Hu Line should prioritize development based on local prerequisites influencing the coupling coordination degree and the relative relationship between human activities and eco-environmental quality. It is crucial to actively adjust development strategies and pursue a sustainable development path towards the high-level coordination between eco-environmental quality and human activities.


Assuntos
Conservação dos Recursos Naturais , Atividades Humanas , China , Humanos , Ecossistema , Monitoramento Ambiental/métodos , Desenvolvimento Sustentável , Modelos Teóricos , Meio Ambiente
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731930

RESUMO

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Assuntos
Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo
13.
Zhongguo Gu Shang ; 37(5): 530-4, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38778540

RESUMO

Anterior subcutaneous internal fixation (INFIX) is one of the current representatives of minimally invasive fixation of injuries to the anterior pelvic ring. The nail insertion point of this technique is located at the anterior inferior iliac spinous screw, with an angle of 30° outward and 20° backward. Screw in at an angle, and note that the screw head should be above the deep fascia and maintain a safe distance of 20 to 25 mm from the bone surface. Its improved versions include 3 or 4 nails INFIX with added pubic tubercle screws, unilateral INFIX, short-rod INFIX, and double INFIX. These improvements further enhance stability. The lateral femoral cutaneous nerve (LFCN) is relatively easy to be damaged during anatomy, so special attention should be paid during the operation. Biomechanical stability has advantages over external fixation, and its application is flexible. It is not limited to pubic ramus fracture, symphyseal separation, etc. It also plays an important role in combined anterior and posterior ring fixation. It can be combined with posterior sacroiliac screws, iliac lumbar screws, etc. Fixed etc. Good clinical results have also been reported in children, pregnant women, and people with contraindications for subcutaneous connecting rods. In addition, the current application of robots, reduction frames and other technologies has greatly reduced the difficulty of reduction and improved the quality of closed reduction, making it possible to fix complex pelvic fracture. This technique has high reduction quality and is as effective as traditional steel plates. A common complication is LFCN injury. Careful exposure and adjustment of the position and depth of internal fixation during surgery can effectively avoid this complication.


Assuntos
Fixação Interna de Fraturas , Ossos Pélvicos , Humanos , Fixação Interna de Fraturas/métodos , Ossos Pélvicos/lesões , Ossos Pélvicos/cirurgia , Fraturas Ósseas/cirurgia
14.
BMC Chem ; 18(1): 99, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734638

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to over six million deaths worldwide. In human immune system, the type 1 interferon (IFN) pathway plays a crucial role in fighting viral infections. However, the ORF8 protein of the virus evade the immune system by interacting with IRF3, hindering its nuclear translocation and consequently downregulate the type I IFN signaling pathway. To block the binding of ORF8-IRF3 and inhibit viral pathogenesis a quick discovery of an inhibitor molecule is needed. Therefore, in the present study, the interface between the ORF8 and IRF3 was targeted on a high-affinity carbon nanotube by using computational tools. After analysis of 62 carbon nanotubes by multiple docking with the induced fit model, the top five compounds with high docking scores of - 7.94 kcal/mol, - 7.92 kcal/mol, - 7.28 kcal/mol, - 7.19 kcal/mol and - 7.09 kcal/mol (top hit1-5) were found to have inhibitory activity against the ORF8-IRF3 complex. Molecular dynamics analysis of the complexes revealed the high compactness of residues, stable binding, and strong hydrogen binding network among the ORF8-nanotubes complexes. Moreover, the total binding free energy for top hit1-5 was calculated to be - 43.21 ± 0.90 kcal/mol, - 41.17 ± 0.99 kcal/mol, - 48.85 ± 0.62 kcal/mol, - 43.49 ± 0.77 kcal/mol, and - 31.18 ± 0.78 kcal/mol respectively. These results strongly suggest that the identified top five nanotubes (hit1-5) possess significant potential for advancing and exploring innovative drug therapies. This underscores their suitability for subsequent in vivo and in vitro experiments, marking them as promising candidates worthy of further investigation.

16.
J Org Chem ; 89(10): 7138-7147, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38695505

RESUMO

An economical one-pot, three-step reaction sequence of readily available 2-monosubstituted 1,3-diketones and 1,4-benzoquinones has been explored for the facile access of 2,3-dialkyl-5-hydroxybenzofurans. By using cheap K2CO3 and conc. HCl as the reaction promoters, the reaction occurs smoothly via sequential Michael addition, aromatization, retro-Claisen, deacylation, hemiketalization, and dehydration processes under mild conditions in a practical manner. Additionally, an interesting phenomenon was observed during the derivatization studies, where the dihydroquinoline was converted into tetrahydroquinoline and quinoline products, respectively, via a disproportionation process.

17.
Sci Data ; 11(1): 463, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714688

RESUMO

Adverse perinatal factors can interfere with the normal development of the brain, potentially resulting in long-term effects on the comprehensive development of children. Presently, the understanding of cognitive and neurodevelopmental processes under conditions of adverse perinatal factors is substantially limited. There is a critical need for an open resource that integrates various perinatal factors with the development of the brain and mental health to facilitate a deeper understanding of these developmental trajectories. In this Data Descriptor, we introduce a multicenter database containing information on perinatal factors that can potentially influence children's brain-mind development, namely, periCBD, that combines neuroimaging and behavioural phenotypes with perinatal factors at county/region/central district hospitals. PeriCBD was designed to establish a platform for the investigation of individual differences in brain-mind development associated with perinatal factors among children aged 3-10 years. Ultimately, our goal is to help understand how different adverse perinatal factors specifically impact cognitive development and neurodevelopment. Herein, we provide a systematic overview of the data acquisition/cleaning/quality control/sharing, processes of periCBD.


Assuntos
Encéfalo , Desenvolvimento Infantil , Criança , Pré-Escolar , Humanos , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , China , Cognição , Bases de Dados Factuais , Neuroimagem
18.
World J Gastroenterol ; 30(11): 1609-1620, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617448

RESUMO

BACKGROUND: Liver cancer is one of the deadliest malignant tumors worldwide. Immunotherapy has provided hope to patients with advanced liver cancer, but only a small fraction of patients benefit from this treatment due to individual differences. Identifying immune-related gene signatures in liver cancer patients not only aids physicians in cancer diagnosis but also offers personalized treatment strategies, thereby improving patient survival rates. Although several methods have been developed to predict the prognosis and immunotherapeutic efficacy in patients with liver cancer, the impact of cell-cell interactions in the tumor microenvironment has not been adequately considered. AIM: To identify immune-related gene signals for predicting liver cancer prognosis and immunotherapy efficacy. METHODS: Cell grouping and cell-cell communication analysis were performed on single-cell RNA-sequencing data to identify highly active cell groups in immune-related pathways. Highly active immune cells were identified by intersecting the highly active cell groups with B cells and T cells. The significantly differentially expressed genes between highly active immune cells and other cells were subsequently selected as features, and a least absolute shrinkage and selection operator (LASSO) regression model was constructed to screen for diagnostic-related features. Fourteen genes that were selected more than 5 times in 10 LASSO regression experiments were included in a multivariable Cox regression model. Finally, 3 genes (stathmin 1, cofilin 1, and C-C chemokine ligand 5) significantly associated with survival were identified and used to construct an immune-related gene signature. RESULTS: The immune-related gene signature composed of stathmin 1, cofilin 1, and C-C chemokine ligand 5 was identified through cell-cell communication. The effectiveness of the identified gene signature was validated based on experimental results of predictive immunotherapy response, tumor mutation burden analysis, immune cell infiltration analysis, survival analysis, and expression analysis. CONCLUSION: The findings suggest that the identified gene signature may contribute to a deeper understanding of the activity patterns of immune cells in the liver tumor microenvironment, providing insights for personalized treatment strategies.


Assuntos
Cofilina 1 , Neoplasias Hepáticas , Humanos , Ligantes , Estatmina , Prognóstico , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Comunicação Celular , Quimiocinas CC , Microambiente Tumoral/genética
19.
BMC Ecol Evol ; 24(1): 52, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654171

RESUMO

BACKGROUND: The eastern edge of the Qinghai‒Tibet Plateau (QTP) and subtropical China have various regions where plant species originate and thrive, but these regions have been the focus of very few integrative studies. Here, we elucidated the phylogeographic structure of a continuous and widespread Akebia trifoliata population across these two regions. RESULTS: Sixty-one populations consisting of 391 genotypes were examined to assess population diversity and structure via network distribution analysis, maximum likelihood phylogenetic tree reconstruction, divergence time estimation, demographic history inference, and ancestral area reconstruction of both conserved internal transcribed spacer (ITS) and chloroplast (rps16) DNA sequences. The results showed that the ITS region was more variable than the rps16 region and could be suitable for studying intraspecific phylogeography. The A. trifoliata population displayed high genetic diversity, genetic differentiation and obvious phylogeographical structure, possibly originating on the eastern QTP, expanding during the last glacial-interglacial cycle, diverging in the early Pleistocene and middle Pleistocene, and extensively migrating thereafter. The migration route from west to east along rivers could be largely responsible for the long-distance dispersal of this species, while three main refuges (Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) with multiple ice shelters facilitated its wide distribution. CONCLUSIONS: Our results suggested that the from west to east long migration accompanying with the minor short reciprocal migration in the south-north direction, and the three main refuges (the Qinba Mountains, Nanling Mountains and Yunnan-Guizhou Plateau) contributed to the extant geographical distribution of A. trifoliata. In addition, this finding also strongly reduced the discrepancy between glacial contraction and postglacial expansion and the in situ survival hypothesis by simultaneously considering the existence of many similar climate-related ecological niches and migration influences.


Assuntos
Filogeografia , China , DNA de Cloroplastos/genética , Análise de Sequência de DNA , Variação Genética/genética , Filogenia , Tibet , Evolução Molecular , DNA de Plantas/genética
20.
Phytomedicine ; 129: 155579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574427

RESUMO

BACKGROUND AND AIMS: Chronic coronary syndrome (CCS) has always been controversial in its therapeutic strategy. Although invasive treatment and optimal medication therapy (OMT) are the most commonly used treatments, doctors continue to debate the best strategy. However, traditional Chinese medicine (TCM) for CCS is effective clinically. METHODS: To identify potentially eligible observational and experimental studies, we searched Pubmed, the Web of Science, and the China National Knowledge Internet. To be eligible, studies had to report with end-of treatment outcomes, such as major adverse cardiac events (MACE), deaths from myocardial infarctions (MI), all-cause mortality, angina, cardiac mortality, the effectiveness rate of electrocardiographs, and the reduction rate of the Nitroglycerin tablets. Risk differences (RDs) and 95 % confidence intervals (95 % CIs) were calculated based on random-effects models or fixed-effects models. Citation screening, data abstraction, risk assessment, and strength-of-evidence grading were completed by 2 independent reviewers. RESULTS: In Section 1 (13 studies, involving 17,287 patients), showed no significant difference between invasive treatment and medication treatment in MACE (RD = -0.04, 95% CI = -0.08 to 0.00, I2 = 76.4 %), all-cause mortality (RD = -0.01, 95%CI = -0.022 to 0.01, I2 = 73.44 %), MI (RD = 0.00, 95%CI = -0.00 to 0.01, I2 = 0.00 %) and cardiac mortality (RD = 0.00, 95 %CI = -0.01 to 0.01, I2 = 34.9 %). In Section 2 (21 studies, including 1820 patients), compared with WM treatment, TCM + WM treatment increased ECG effectiveness by 18 %, angina effectiveness by 20 %, and stopping or reducing Nitroglycerin tablets by 20 %. In Section 3 (25 studies, including 2859 patients) showed that TCM revealed a better electrocardiogram effective rate (RD = 0.10, 95 %CI = 0.05 to 0.14, I2 = 44.7 %) and angina effective rate (RD = 0.12, 95 %CI = 0.09 to 0.15, I2 = 44.9 %). We identified that TCM treatment properties of "Circulating blood and transforming stasis" and application of warm/heat-properties medicines were frequently used in CCS treatment. CONCLUSIONS: TCM treatment has shown superior beneficial cardioprotective in CCS therapy strategy, among which "Circulating blood and transforming stasis" and the application of warm/heat-properties medicine are its characteristics.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Doença Crônica/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Infarto do Miocárdio/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA