RESUMO
BACKGROUND: Neurocognitive dysfunction is observationally associated with the risk of psychiatric disorders. Blood metabolites, which are readily accessible, may become highly promising biomarkers for brain disorders. However, the causal role of blood metabolites in neurocognitive function, and the biological pathways underlying their association with psychiatric disorders remain unclear. METHODS: To explore their putative causalities, we conducted bidirectional two-sample Mendelian randomization (MR) using genetic variants associated with 317 human blood metabolites (nmax = 215,551), g-Factor (an integrated index of multiple neurocognitive tests with nmax = 332,050), and 10 different psychiatric disorders (n = 9,725 to 807,553) from the large-scale genome-wide association studies of European ancestry. Mediation analysis was used to assess the potential causal pathway among the candidate metabolite, neurocognitive trait and corresponding psychiatric disorder. RESULTS: MR evidence indicated that genetically predicted acetylornithine was positively associated with g-Factor (0.035 standard deviation units increase in g-Factor per one standard deviation increase in acetylornithine level; 95% confidence interval, 0.021 to 0.049; P = 1.15 × 10-6). Genetically predicted butyrylcarnitine was negatively associated with g-Factor (0.028 standard deviation units decrease in g-Factor per one standard deviation increase in genetically proxied butyrylcarnitine; 95% confidence interval, -0.041 to -0.015; P = 1.31 × 10-5). There was no evidence of associations between genetically proxied g-Factor and metabolites. Furthermore, the mediation analysis via two-step MR revealed that the causal pathway from acetylornithine to bipolar disorder was partly mediated by g-Factor, with a mediated proportion of 37.1%. Besides, g-Factor mediated the causal pathway from butyrylcarnitine to schizophrenia, with a mediated proportion of 37.5%. Other neurocognitive traits from different sources provided consistent findings. CONCLUSION: Our results provide genetic evidence that acetylornithine protects against bipolar disorder through neurocognitive abilities, while butyrylcarnitine has an adverse effect on schizophrenia through neurocognition. These findings may provide insight into interventions at the metabolic level for risk of neurocognitive and related disorders.
Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtornos Mentais , Humanos , Transtornos Mentais/genética , Transtornos Mentais/sangue , Biomarcadores/sangue , Disfunção Cognitiva/genética , Disfunção Cognitiva/sangue , Transtorno Bipolar/genética , Transtorno Bipolar/sangue , Análise de Mediação , Esquizofrenia/genética , Esquizofrenia/sangue , Testes Neuropsicológicos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Deep vein thrombosis (DVT) is a leading cause of morbidity and mortality after trauma. Here, we integrate plasma metabolomics and proteomics to evaluate the metabolic alterations and their function in up to 680 individuals with and without DVT after trauma (pt-DVT). We identify 28 metabolites and 2 clinical parameter clusters associated with pt-DVT. Then, we develop a panel of 9 metabolites (hexadecanedioic acid, pyruvic acid, L-Carnitine, serotonin, PE(P-18:1(11Z)/18:2(9Z,12Z)), 3-Hydroxycapric acid, 5,6-DHET, 3-Methoxybenzenepropanoic acid and pentanenitrile) that can predict pt-DVT with high performance, which can be verified in an independent cohort. Furthermore, the integration analysis of metabolomics and proteomics data indicates that the upregulation of glycolysis/gluconeogenesis-TCA cycle may promote thrombosis by regulating ROS levels in red blood cells, suggesting that interfering with this process might be potential therapeutic strategies for pt-DVT. Together, our study comprehensively delineates the metabolic and hematological dysregulations for pt-DVT, and provides potential biomarkers for early detection.
Assuntos
Proteoma , Proteômica , Trombose Venosa , Humanos , Trombose Venosa/sangue , Trombose Venosa/metabolismo , Trombose Venosa/etiologia , Proteoma/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Proteômica/métodos , Metabolômica/métodos , Biomarcadores/sangue , Ferimentos e Lesões/complicações , Ferimentos e Lesões/sangue , Ferimentos e Lesões/metabolismo , Espécies Reativas de Oxigênio/metabolismo , GlicóliseRESUMO
BACKGROUND: Decision fatigue is a new concept in the field of psychology and refers to a state of fatigue alongside impaired cognitive processing and emotional regulation ability. Previous studies have confirmed that nurses are prone to decision fatigue, and nurses who experience decision fatigue may implement nursing measures that are inconsistent with clinical evidence, thus affecting patients' benefits. COVID-19, as a large-scale global public health emergency, increased the workload and burden of nurses and aggravated decision fatigue. However, the factors leading to decision fatigue among nurses have not yet been identified. METHODS: This study is guided by interpretative phenomenology. During the epidemic period of COVID-19: From November 2022 to February 2023, a one-to-one, semi-structured in-depth interview was conducted among nurses with decision fatigue experience who were participating in front-line work in Jilin Province using homogenous sampling. The interview recordings and related data were transcribed into text within 24 h, and data analysis was assisted by NVivo 12.0 software. RESULTS: After a total of 14 front-line nurses were analyzed in this study, The thematic level reaches saturation, the findings present a persuasive and coherent narrative, and the study is terminated, and finally extracted and formed three core themes: "Cognition, influence and attitude of decision fatigue", "Approaching factors of decision fatigue" and "Avoidant factors of decision fatigue". CONCLUSION: This study confirmed that decision fatigue was widespread in the work of front-line nurses, affecting the physical and psychological health of nurses, the quality of nursing work, the degree of benefit of patients and the clinical outcome. However, nursing staff do not know enough about decision fatigue, so the popularization and research of decision fatigue should be strengthened. Improve the attention of medical institutions, nursing managers and nursing staff.Some suggestions are put forward for the intervention of decision fatigue through personnel, task, tool and technology, organization and environment.
RESUMO
The human brain has been implicated in the pathogenesis of several complex diseases. Taking advantage of single-cell techniques, genome-wide association studies (GWAS) have taken it a step further and revealed brain cell-type-specific functions for disease loci. However, genetic causal associations inferred by Mendelian randomization (MR) studies usually include all instrumental variables from GWAS, which hampers the understanding of cell-specific causality. Here, we developed an analytical framework, Cell-Stratified MR (csMR), to investigate cell-stratified causality through colocalizing GWAS signals with single-cell eQTL from different brain cells. By applying to obesity-related traits, our results demonstrate the cell-type-specific effects of GWAS variants on gene expression, and indicate the benefits of csMR to identify cell-type-specific causal effect that is often hidden from bulk analyses. We also found csMR valuable to reveal distinct causal pathways between different obesity indicators. These findings suggest the value of our approach to prioritize target cells for extending genetic causation studies.
Assuntos
Encéfalo , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Humanos , Obesidade/genética , Obesidade/metabolismo , Encéfalo/metabolismo , Análise de Célula Única/métodos , Predisposição Genética para Doença/genética , Causalidade , Regulação da Expressão Gênica , Expressão Gênica/genéticaRESUMO
Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.
Assuntos
Biomarcadores , Encéfalo , Neuroimagem , Esquizofrenia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Humanos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fenótipo , Imageamento por Ressonância Magnética/métodos , Aprendizado de MáquinaRESUMO
Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.
Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
BACKGROUND: Growing evidence indicates that dynamic changes in gut microbiome can affect intelligence; however, whether these relationships are causal remains elusive. We aimed to disentangle the poorly understood causal relationship between gut microbiota and intelligence. METHODS: We performed a 2-sample Mendelian randomization (MR) analysis using genetic variants from the largest available genome-wide association studies of gut microbiota (N = 18,340) and intelligence (N = 269,867). The inverse-variance weighted method was used to conduct the MR analyses complemented by a range of sensitivity analyses to validate the robustness of the results. Considering the close relationship between brain volume and intelligence, we applied 2-step MR to evaluate whether the identified effect was mediated by regulating brain volume (N = 47,316). RESULTS: We found a risk effect of the genus Oxalobacter on intelligence (odds ratio = 0.968 change in intelligence per standard deviation increase in taxa; 95% CI, 0.952-0.985; p = 1.88 × 10-4) and a protective effect of the genus Fusicatenibacter on intelligence (odds ratio = 1.053; 95% CI, 1.024-1.082; p = 3.03 × 10-4). The 2-step MR analysis further showed that the effect of genus Fusicatenibacter on intelligence was partially mediated by regulating brain volume, with a mediated proportion of 33.6% (95% CI, 6.8%-60.4%; p = .014). CONCLUSIONS: Our results provide causal evidence indicating the role of the microbiome in intelligence. Our findings may help reshape our understanding of the microbiota-gut-brain axis and development of novel intervention approaches for preventing cognitive impairment.
Assuntos
Encéfalo , Microbioma Gastrointestinal , Estudo de Associação Genômica Ampla , Inteligência , Análise da Randomização Mendeliana , Humanos , Microbioma Gastrointestinal/genética , Inteligência/fisiologia , Inteligência/genética , Encéfalo/diagnóstico por imagem , Tamanho do ÓrgãoRESUMO
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Assuntos
AVC Isquêmico , Macrófagos , Microglia , Fagocitose , Microglia/patologia , Microglia/metabolismo , Humanos , Animais , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Apoptose , Isquemia Encefálica/patologia , EferocitoseRESUMO
The precise roles of chromatin organization at osteoporosis risk loci remain largely elusive. Here, we combined chromatin interaction conformation (Hi-C) profiling and self-transcribing active regulatory region sequencing (STARR-seq) to qualify enhancer activities of prioritized osteoporosis-associated single-nucleotide polymorphisms (SNPs). We identified 319 SNPs with biased allelic enhancer activity effect (baaSNPs) that linked to hundreds of candidate target genes through chromatin interactions across 146 loci. Functional characterizations revealed active epigenetic enrichment for baaSNPs and prevailing osteoporosis-relevant regulatory roles for their chromatin interaction genes. Further motif enrichment and network mapping prioritized several putative, key transcription factors (TFs) controlling osteoporosis binding to baaSNPs. Specifically, we selected one top-ranked TF and deciphered that an intronic baaSNP (rs11202530) could allele-preferentially bind to YY2 to augment PAPSS2 expression through chromatin interactions and promote osteoblast differentiation. Our results underline the roles of TF-mediated enhancer-promoter contacts for osteoporosis, which may help to better understand the intricate molecular regulatory mechanisms underlying osteoporosis risk loci.
Assuntos
Osteoporose , Sequências Reguladoras de Ácido Nucleico , Humanos , Fatores de Transcrição/genética , Osteoporose/genética , Cromatina/genética , Regiões Promotoras Genéticas/genéticaRESUMO
The synovium is an important component of any synovial joint and is the major target tissue of inflammatory arthritis. However, the multi-omics landscape of synovium required for functional inference is absent from large-scale resources. Here we integrate genomics with transcriptomics and chromatin accessibility features of human synovium in up to 245 arthritic patients, to characterize the landscape of genetic regulation on gene expression and the regulatory mechanisms mediating arthritic diseases predisposition. We identify 4765 independent primary and 616 secondary cis-expression quantitative trait loci (cis-eQTLs) in the synovium and find that the eQTLs with multiple independent signals have stronger effects and heritability than single independent eQTLs. Integration of genome-wide association studies (GWASs) and eQTLs identifies 84 arthritis related genes, revealing 38 novel genes which have not been reported by previous studies using eQTL data from the GTEx project or immune cells. We further develop a method called eQTac to identify variants that could affect gene expression by affecting chromatin accessibility and identify 1517 regions with potential regulatory function of chromatin accessibility. Altogether, our study provides a comprehensive synovium multi-omics resource for arthritic diseases and gains new insights into the regulation of gene expression.
Assuntos
Artrite , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença/genética , Regulação da Expressão Gênica , Cromatina/genética , Membrana Sinovial , Artrite/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
â¢RNA editing sites may contain homoplasious signals that cause artifactual inferences in phylogenetic analyses.â¢Excluding RNA editing sites from gymnosperm mitochondrial genes restored the sister relationship of gnetophytes and Pinaceae.â¢Phylogenetic analysis based on mitochondrial genomic data should carefully evaluate the impact of RNA editing sites.
RESUMO
Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.
Assuntos
Resistência à Insulina , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Fatores de Transcrição/genética , Cromatina/genética , Fenótipo , Elementos Facilitadores Genéticos/genéticaRESUMO
BACKGROUND: Stroke is a major cause of mortality and long-term disability worldwide. Whether the associations between brain imaging-derived phenotypes (IDPs) and stroke are causal is uncertain. METHODS: We performed two-sample bidirectional Mendelian randomization (MR) analyses to explore the causal associations between IDPs and stroke. Summary data of 587 brain IDPs (up to 33,224 individuals) from the UK Biobank and five stroke types (sample size range from 301,663 to 446,696, case number range from 5,386 to 40,585) from the MEGASTROKE consortium were used. RESULTS: Forward MR indicated 14 IDPs belong to projection fibers or association fibers were associated with stroke. For example, higher genetically determined mean diffusivity (MD) in the right external capsule was causally associated with an increased risk of small vessel stroke (IVW OR = 2.76, 95% CI 2.07 to 3.68, P = 5.87 × 10-12). Reverse MR indicated that genetically determined higher risk of any ischemic stroke was associated with increased isotropic or free water volume fraction (ISOVF) in body of corpus callosum (IVW ß = 0.23, 95% CI 0.14 to 0.33, P = 3.22 × 10-7). This IDP is a commissural fiber and it is not included in the IDPs identified by forward MR. CONCLUSIONS: We identified 14 IDPs with statistically significant evidence of causal effects on stroke or stroke subtypes. We also identified potential causal effects of stroke on one IDP of commissural fiber. These findings might guide further work toward identifying preventative strategies at the brain imaging levels.
Assuntos
Análise da Randomização Mendeliana , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/genética , Encéfalo/diagnóstico por imagem , Fenótipo , Neuroimagem , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.
Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Proliferação de Células/genética , Células Cultivadas , Cromossomos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas Repressoras/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Proteína 2 Relacionada a Actina/metabolismoRESUMO
BACKGROUND: Pancreaticoduodenectomy is the first choice surgical intervention for the radical treatment of pancreatic tumors. However, an anastomotic fistula is a common complication after pancreaticoduodenectomy with a high mortality rate. With the development of minimally invasive surgery, open pancreaticoduodenectomy (OPD), laparoscopic pancreaticoduodenectomy (LPD), and robotic pancreaticoduodenectomy (RPD) are gaining interest. But the impact of these surgical methods on the risk of anastomosis has not been confirmed. Therefore, we aimed to integrate relevant clinical studies and explore the effects of these three surgical methods on the occurrence of anastomotic fistula after pancreaticoduodenectomy. METHODS: A systematic literature search was conducted for studies reporting the RPD, LPD, and OPD. Network meta-analysis of postoperative anastomotic fistula (Pancreatic fistula, biliary leakage, gastrointestinal fistula) was performed. RESULTS: Sixty-five studies including 10,026 patients were included in the network meta-analysis. The rank of risk probability of pancreatic fistula for RPD (0.00) was better than LPD (0.37) and OPD (0.62). Thus, the analysis suggests the rank of risk of the postoperative pancreatic fistula for RPD, LPD, and OPD. The rank of risk probability for biliary leakage was similar for RPD (0.15) and LPD (0.15), and both were better than OPD (0.68). CONCLUSIONS: This network meta-analysis provided ranking for three different types of pancreaticoduodenectomy. The RPD and LPD can effectively improve the quality of surgery and are safe as well as feasible for OPD.
Assuntos
Laparoscopia , Neoplasias Pancreáticas , Procedimentos Cirúrgicos Robóticos , Humanos , Pancreaticoduodenectomia/efeitos adversos , Pancreaticoduodenectomia/métodos , Fístula Pancreática/etiologia , Fístula Pancreática/complicações , Metanálise em Rede , Pancreatectomia/efeitos adversos , Neoplasias Pancreáticas/patologia , Anastomose Cirúrgica/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Laparoscopia/métodos , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Tempo de InternaçãoRESUMO
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease with multiple environmental and genetic factors involved in its etiology. Although lots of genetic loci associated with AD have been reported by GWASs, only a small part of phenotypic variations can be explained. To identify additional susceptibility genes on AD, we conducted a large-scale transcriptome-wide association study using a joint-tissue imputation approach in â¼840,000 European individuals combined with six precomputed gene expression weights of four AD-relevant tissues, including skin fibroblast, lymphocyte, and whole blood. The Mendelian randomization causal inference analysis was performed to estimate the causal effect of transcriptome-wide association studyâidentified genes. We identified 51 genes significantly associated with AD after Bonferroni corrections, and 19 genes showed putatively causal associations such as an established gene FLG (P = 3.98 × 10â10) and seven genes that have not been implicated in previous transcriptome-wide association studies, such as AQP3 (P = 4.43 × 10â7) and PDCD1 (P = 7.66 × 10â7). Among them, four genes (AQP3, PDCD1, ADCY3, and DOLPP1) were further supported in differential expression analyses or the Mouse Genome Informatics database. Overall, our study identified susceptibility genes associated with AD, providing, to our knowledge, previously unreported clues in revealing the genetic mechanisms in AD.
Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Pele/metabolismo , Loci Gênicos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Human mesenchymal stem cells (hMSCs) can be differentiated into osteoblasts and adipocytes. During these processes, super enhancers (SEs) play important roles. Here, we performed comprehensive characterization of the SEs changes associated with adipogenic and osteogenic differentiation of hMSCs, and revealed that SEs changed more dramatically compared with typical enhancers. We identified a set of lineage-selective SEs, whose target genes were enriched with cell type-specific functions. Functional experiments in lineage-selective SEs demonstrated their specific roles in directed differentiation of hMSCs. We also found that some key transcription factors regulated by lineage-selective SEs could form core regulatory circuitry (CRC) to regulate each other's expression and control the hMSCs fate determination. In addition, we found that GWAS SNPs of osteoporosis and obesity were significantly enriched in osteoblasts-selective SEs or adipocytes-selective SEs, respectively. Taken together, our studies unveiled important roles of lineage-selective SEs in hMSCs differentiation into osteoblasts and adipocytes.
Assuntos
Células-Tronco Mesenquimais , Osteogênese , Adipogenia/genética , Diferenciação Celular/genética , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Fatores de Transcrição/metabolismoRESUMO
Observational studies have reported the correlations between brain imaging-derived phenotypes (IDPs) and psychiatric disorders; however, whether the relationships are causal is uncertain. We conducted bidirectional two-sample Mendelian randomization (MR) analyses to explore the causalities between 587 reliable IDPs (N = 33,224 individuals) and 10 psychiatric disorders (N = 9,725 to 161,405). We identified nine IDPs for which there was evidence of a causal influence on risk of schizophrenia, anorexia nervosa and bipolar disorder. For example, 1 s.d. increase in the orientation dispersion index of the forceps major was associated with 32% lower odds of schizophrenia risk. Reverse MR indicated that only genetically predicted schizophrenia was positively associated with two IDPs, the cortical surface area and the volume of the right pars orbitalis. We established the BrainMR database ( http://www.bigc.online/BrainMR/ ) to share our results. Our findings provide potential strategies for the prediction and intervention for psychiatric disorder risk at the brain-imaging level.
Assuntos
Análise da Randomização Mendeliana , Transtornos Mentais , Humanos , Análise da Randomização Mendeliana/métodos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Causalidade , Fenótipo , Neuroimagem , Estudo de Associação Genômica AmplaRESUMO
Human mesenchymal stem cells (hMSCs) can be differentiated into adipocytes and osteoblasts. The processes are driven by the rewiring of chromatin architectures and transcriptomic/epigenomic changes. Here, we induced hMSCs to adipogenic and osteogenic differentiation, and performed 2 kb resolution Hi-C experiments for chromatin loops detection. We also generated matched RNA-seq, ChIP-seq and ATAC-seq data for integrative analysis. After comprehensively comparing adipogenesis and osteogenesis, we quantitatively identified lineage-specific loops and screened out lineage-specific enhancers and open chromatin. We reveal that lineage-specific loops can activate gene expression and facilitate cell commitment through combining enhancers and accessible chromatin in a lineage-specific manner. We finally proposed loop-mediated regulatory networks and identified the controlling factors for adipocytes and osteoblasts determination. Functional experiments validated the lineage-specific regulation networks towards IRS2 and RUNX2 that are associated with adipogenesis and osteogenesis, respectively. These results are expected to help better understand the chromatin conformation determinants of hMSCs fate commitment.
Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Epigenômica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismoRESUMO
Growing evidence suggests that relative carbohydrate intake affects depression; however, the association between carbohydrates and depression remains controversial. To test this, we performed a two-sample bidirectional Mendelian randomization (MR) analysis using genetic variants associated with relative carbohydrate intake (N = 268,922) and major depressive disorder (N = 143,265) from the largest available genome-wide association studies. MR evidence suggested a causal relationship between higher relative carbohydrate intake and lower depression risk (odds ratio, 0.42 for depression per one-standard-deviation increment in relative carbohydrate intake; 95% confidence interval, 0.28 to 0.62; P = 1.49 × 10-5). Multivariable MR indicated that the protective effect of relative carbohydrate intake on depression persisted after conditioning on other diet compositions. The mediation analysis via two-step MR showed that this effect was partly mediated by body mass index, with a mediated proportion of 15.4% (95% confidence interval, 6.7% to 24.1%). These findings may inform prevention strategies and interventions directed towards relative carbohydrate intake and depression.