Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
3.
Nat Commun ; 15(1): 4624, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816389

RESUMO

Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.


Assuntos
Evolução Molecular , Oomicetos , Filogenia , Telômero , Telômero/genética , Oomicetos/genética , Oomicetos/patogenicidade , Virulência/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Pythium/genética , Pythium/patogenicidade , Phytophthora/genética , Phytophthora/patogenicidade , Cromossomos/genética , Plantas/microbiologia , Plantas/genética , Genoma/genética
4.
New Phytol ; 242(2): 576-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362937

RESUMO

Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest class of membrane-localized receptor-like kinases in plants. Leucine-rich repeat receptor-like kinases are key immune sectors contributing to pattern-triggered immunity (PTI), but whether LRR-RLK mediates effector-triggered immunity (ETI) in plants remains unclear. In this study, we evaluated the function of LRR-RLKs in regulating ETI by using a virus-induced gene silencing (VIGS)-based reverse genetic screening assay, and identified a LRR-RLK named ETI-dependent receptor-like kinase 1 (EDK1) required for ETI triggered by the avirulence effector AVRblb2 secreted by Phytophthora infestans and its cognate receptor Rpi-blb2. Silencing or knockout of EDK1 compromised immunity mediated by Rpi-blb2 and the cell death triggered by recognition of AVRblb2. NLR-required for cell death 4 (NRC4), a signaling component acts downstream of Rpi-blb2, was identified that interacts with EDK1 using the LC-MS analysis and the interaction was further evaluated by co-immunoprecipitation. EDK1 promotes protein accumulation of NRC4 in a kinase-dependent manner and positively regulates resistance to P. infestans in Nicotiana benthamiana. Our study revealed that EDK1 positively regulates plant ETI through modulating accumulation of the NLR signaling component NRC4, representing a new regulatory role of the membrane-localized LRR-RLKs in plant immunity.


Assuntos
Reconhecimento da Imunidade Inata , Nicotiana , Nicotiana/genética , Leucina , Plantas , Imunidade Vegetal , Morte Celular , Doenças das Plantas/genética
6.
Mol Plant Pathol ; 24(12): 1510-1521, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37731193

RESUMO

The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.


Assuntos
Anti-Infecciosos , Bacillus , Bacillus/genética , Bacillus/metabolismo , Anti-Infecciosos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus subtilis
7.
New Phytol ; 240(4): 1467-1483, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37658678

RESUMO

The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Splicing de RNA/genética , Éxons/genética , Imunidade Vegetal/genética , Processamento Alternativo/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
8.
Nat Commun ; 14(1): 4877, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573360

RESUMO

Extracellular vesicles (EVs) are important for cell-to-cell communication in animals. EVs also play important roles in plant-microbe interactions, but the underlying mechanisms remain elusive. Here, proteomic analyses of EVs from the soybean (Glycine max) root rot pathogen Phytophthora sojae identify the tetraspanin family proteins PsTET1 and PsTET3, which are recognized by Nicotiana benthamiana to trigger plant immune responses. Both proteins are required for the full virulence of P. sojae. The large extracellular loop (EC2) of PsTET3 is the key region recognized by N. benthamiana and soybean cells in a plant receptor-like kinase NbSERK3a/b dependent manner. TET proteins from oomycete and fungal plant pathogens are recognized by N. benthamiana thus inducing immune responses, whereas plant-derived TET proteins are not due to the sequence divergence of sixteen amino acids at the C-terminal of EC2. This feature allows plants to distinguish self and non-self EVs to trigger active defense responses against pathogenic eukaryotes.


Assuntos
Vesículas Extracelulares , Phytophthora , Proteômica , Phytophthora/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virulência , Vesículas Extracelulares/metabolismo , Glycine max/metabolismo , Doenças das Plantas/microbiologia
9.
New Phytol ; 240(2): 784-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615219

RESUMO

The role of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 (CAP) superfamily proteins in the innate immune responses of mammals is well characterized. However, the biological function of CAP superfamily proteins in plant-microbe interactions is poorly understood. We used proteomics and transcriptome analyses to dissect the apoplastic effectors secreted by the oomycete Phytophthora sojae during early infection of soybean leaves. By transiently expressing these effectors in Nicotiana benthamiana, we identified PsCAP1, a novel type of secreted CAP protein that triggers immune responses in multiple solanaceous plants including N. benthamiana. This secreted CAP protein is conserved among oomycetes, and multiple PsCAP1 homologs can be recognized by N. benthamiana. PsCAP1-triggered immune responses depend on the N-terminal immunogenic fragment (aa 27-151). Pretreatment of N. benthamiana with PsCAP1 or the immunogenic fragment increases plant resistance against Phytophthora. The recognition of PsCAP1 and different homologs requires the leucine-rich repeat receptor-like protein RCAP1, which associates with two central receptor-like kinases BRI1-associated receptor kinase 1 (BAK1) and suppressor of BIR1-1 (SOBIR1) in planta. These findings suggest that the CAP-type apoplastic effectors act as an important player in plant-microbe interactions that can be perceived by plant membrane-localized receptor to activate plant resistance.


Assuntos
Proteínas de Repetições Ricas em Leucina , Phytophthora , Animais , Nicotiana/genética , Leucina , Imunidade Inata , Mamíferos
10.
Proc Natl Acad Sci U S A ; 120(28): e2302226120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399403

RESUMO

Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.


Assuntos
Proteínas de Arabidopsis , Imunidade Vegetal , Imunidade Vegetal/genética , Ciclopentanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
11.
J Integr Plant Biol ; 65(9): 2204-2217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37171031

RESUMO

Plants can be infected by multiple pathogens concurrently in natural systems. However, pathogen-pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae-soybean-Fusarium combinations, more than 80% aggravated disease. Different Fusarium species all enhanced P. sojae infection when co-inoculated on soybean. Treatment with Fusarium secreted non-proteinaceous metabolites had an effect equal to the direct pathogen co-inoculation. By screening a Fusarium graminearum mutant library, we identified Fusarium promoting factor of Phytophthora sojae infection 1 (Fpp1), encoding a zinc alcohol dehydrogenase. Fpp1 is functionally conserved in Fusarium and contributes to metabolite-mediated infection promotion, in which vitamin B6 (VB6) produced by Fusarium is key. Transcriptional and functional analyses revealed that Fpp1 regulates two VB6 metabolism genes, and VB6 suppresses expression of soybean disease resistance-related genes. These results reveal that co-infection with Fusarium promotes loss of P. sojae resistance in soybean, information that will inform the sustainable use of disease-resistant crop varieties and provide new strategies to control soybean root rot.


Assuntos
Fusarium , Phytophthora , Glycine max/metabolismo , Vitamina B 6/metabolismo , Phytophthora/fisiologia , Resistência à Doença/genética , Vitaminas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
PLoS Pathog ; 19(4): e1011346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083862

RESUMO

Oomycetes are a group of filamentous microorganisms that include some of the biggest threats to food security and natural ecosystems. However, much of the molecular basis of the pathogenesis and the development in these organisms remains to be learned, largely due to shortage of efficient genetic manipulation methods. In this study, we developed modified transformation methods for two important oomycete species, Phytophthora infestans and Plasmopara viticola, that bring destructive damage in agricultural production. As part of the study, we established an improved Agrobacterium-mediated transformation (AMT) method by prokaryotic expression in Agrobacterium tumefaciens of AtVIP1 (VirE2-interacting protein 1), an Arabidopsis bZIP gene required for AMT but absent in oomycetes genomes. Using the new method, we achieved an increment in transformation efficiency in two P. infestans strains. We further obtained a positive GFP transformant of P. viticola using the modified AMT method. By combining this method with the CRISPR/Cas12a genome editing system, we successfully performed targeted mutagenesis and generated loss-of-function mutations in two P. infestans genes. We edited a MADS-box transcription factor-encoding gene and found that a homozygous mutation in MADS-box results in poor sporulation and significantly reduced virulence. Meanwhile, a single-copy avirulence effector-encoding gene Avr8 in P. infestans was targeted and the edited transformants were virulent on potato carrying the cognate resistance gene R8, suggesting that loss of Avr8 led to successful evasion of the host immune response by the pathogen. In summary, this study reports on a modified genetic transformation and genome editing system, providing a potential tool for accelerating molecular genetic studies not only in oomycetes, but also other microorganisms.


Assuntos
Ecossistema , Phytophthora infestans , Phytophthora infestans/genética , Agrobacterium tumefaciens/genética , Virulência/genética , Mutação
13.
Microbiol Spectr ; : e0003823, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809029

RESUMO

The genus Bacillus is one of the most important genera for the biological control of plant diseases that are caused by various phytopathogens. The endophytic Bacillus strain DMW1 was isolated from the inner tissues of potato tubers and exhibited strong biocontrol activity. Based on its whole-genome sequence, DMW1 belongs to the Bacillus velezensis species, and it is similar to the model strain B. velezensis FZB42. 12 secondary metabolite biosynthetic gene clusters (BGCs), including two unknown function BGCs, were detected in the DMW1 genome. The strain was shown to be genetically amenable, and seven secondary metabolites acting antagonistically against plant pathogens were identified by a combined genetic and chemical approach. Strain DMW1 did significantly improve the growth of tomato and soybean seedlings, and it was able to control the Phytophthora sojae and Ralstonia solanacearum that were present in the plant seedlings. Due to these properties, the endophytic strain DMW1 appears to be a promising candidate for comparative investigations performed together with the Gram-positive model rhizobacterium FZB42, which is only able to colonize the rhizoplane. IMPORTANCE Phytopathogens are responsible for the wide spread of plant diseases as well as for great losses of crop yields. At present, the strategies used to control plant disease, including the development of resistant cultivars and chemical control, may become ineffective due to the adaptive evolution of pathogens. Therefore, the use of beneficial microorganisms to deal with plant diseases attracts great attention. In the present study, a new strain DMW1, belonging to the species B. velezensis, was discovered with outstanding biocontrol properties. It showed plant growth promotion and disease control abilities that are comparable with those of B. velezensis FZB42 under greenhouse conditions. According to a genomic analysis and a bioactive metabolites analysis, genes that are responsible for promoting plant growth were detected, and metabolites with different antagonistic activities were identified. Our data provide a basis for DMW1 to be further developed and applied as a biopesticide, which is similar to the closely related model strain FZB42.

14.
Mol Plant Pathol ; 24(4): 346-358, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36748674

RESUMO

Plant pathogens secrete effector proteins to overcome host immunity and promote colonization. In oomycete plant pathogens, the expression of many effector genes is altered upon infection; however, the regulatory mechanisms are unclear. In this study, we identified a su(var)3-9, enhancer of zeste, and trithorax (SET) domain protein-encoding gene, PsKMT3, that was highly induced at early infection stages in Phytophthora sojae. Deletion of PsKMT3 led to asexual development and pathogenicity defects. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and western blot analyses demonstrated that histone H3K36 trimethylation (H3K36me3) was significantly reduced genome-wide in mutants. RNA-seq analysis identified 374 genes encoding secreted proteins that were differentially expressed in pskmt3 at the mycelium stage. The significantly altered genes encompassed the RxLR (Arg-x-Lys-Arg) effector gene family, including the essential effector genes Avh23, Avh181, Avh240, and Avh241. Transcriptome analysis at early infection stages showed misregulation of effector gene expression waves in pskmt3. H3K36me3 was directly and indirectly associated with RxLR effector gene activation. Our results reveal a role of a SET domain protein in regulating effector gene expression and modulating histone methylation in P. sojae.


Assuntos
Phytophthora , Histonas/metabolismo , Glycine max , Sequência de Aminoácidos , Domínios PR-SET , Plantas/genética , Expressão Gênica , Doenças das Plantas
15.
Plant Cell ; 35(4): 1186-1201, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36625683

RESUMO

Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.


Assuntos
Phytophthora , Solanum , Proteínas/metabolismo , Plantas/metabolismo , Phytophthora/genética , Phytophthora/metabolismo , Nicotiana/metabolismo , Solanum/metabolismo , Doenças das Plantas
16.
Plant Cell ; 35(1): 574-597, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222564

RESUMO

Plants have evolved sophisticated immune networks to restrict pathogen colonization. In response, pathogens deploy numerous virulent effectors to circumvent plant immune responses. However, the molecular mechanisms by which pathogen-derived effectors suppress plant defenses remain elusive. Here, we report that the nucleus-localized RxLR effector PsAvh110 from the pathogen Phytophthora sojae, causing soybean (Glycine max) stem and root rot, modulates the activity of a transcriptional complex to suppress plant immunity. Soybean like-heterochromatin protein 1-2 (GmLHP1-2) and plant homeodomain finger protein 6 (GmPHD6) form a transcriptional complex with transcriptional activity that positively regulates plant immunity against Phytophthora infection. To suppress plant immunity, the nuclear effector PsAvh110 disrupts the assembly of the GmLHP1-2/GmPHD6 complex via specifically binding to GmLHP1-2, thus blocking its transcriptional activity. We further show that PsAvh110 represses the expression of a subset of immune-associated genes, including BRI1-associated receptor kinase 1-3 (GmBAK1-3) and pathogenesis-related protein 1 (GmPR1), via G-rich elements in gene promoters. Importantly, PsAvh110 is a conserved effector in different Phytophthora species, suggesting that the PsAvh110 regulatory mechanism might be widely utilized in the genus to manipulate plant immunity. Thus, our study reveals a regulatory mechanism by which pathogen effectors target a transcriptional complex to reprogram transcription.


Assuntos
Phytophthora , Imunidade Vegetal , Phytophthora/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Interações Hospedeiro-Patógeno/genética
17.
Mol Plant ; 15(7): 1211-1226, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35733345

RESUMO

Potato (Solanum tuberosum) is the most consumed non-cereal food crop. Most commercial potato cultivars are autotetraploids with highly heterozygous genomes, severely hampering genetic analyses and improvement. By leveraging the state-of-the-art sequencing technologies and polyploid graph binning, we achieved a chromosome-scale, haplotype-resolved genome assembly of a cultivated potato, Cooperation-88 (C88). Intra-haplotype comparative analyses revealed extensive sequence and expression differences in this tetraploid genome. We identified haplotype-specific pericentromeres on chromosomes, suggesting a distinct evolutionary trajectory of potato homologous centromeres. Furthermore, we detected double reduction events that are unevenly distributed on haplotypes in 1021 of 1034 selfing progeny, a feature of autopolyploid inheritance. By distinguishing maternal and paternal haplotype sets in C88, we simulated the origin of heterosis in cultivated tetraploid with a survey of 3110 tetra-allelic loci with deleterious mutations, which were masked in the heterozygous condition by two parents. This study provides insights into the genomic architecture of autopolyploids and will guide their breeding.


Assuntos
Solanum tuberosum , Haplótipos , Melhoramento Vegetal , Poliploidia , Solanum tuberosum/genética , Tetraploidia
18.
Mol Plant Microbe Interact ; 35(4): 301-310, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35037783

RESUMO

Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Phytophthora , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Phytophthora/genética , Fatores de Transcrição/genética
19.
Stress Biol ; 2(1): 34, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676360

RESUMO

Alternative splicing (AS) regulation of pre-mRNA has been proven to be one of the fundamental layers of plant immune system. How pathogens disrupt plant AS process to suppress plant immunity by secreted effectors remain poorly understood. In the recent study, Gui et al. revealed that a previously identified effector PSR1 of Phytophthora interferes with host RNA splicing machinery to modulate small RNA biogenesis, leading to compromised plant immunity. The study provided a novel insight into the importance of AS process during pathogen-host interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA