Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
BMC Med Genomics ; 17(1): 197, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107825

RESUMO

BACKGROUND: Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from Southwest China. METHODS: Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated the correlation between mRNA secondary structure changes and ventricular septal defects. RESULTS: The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the secondary structure of mRNA and reduce the free energy. CONCLUSIONS: These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants investigation in future studies.


Assuntos
Predisposição Genética para Doença , Haplótipos , Comunicação Interventricular , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Humanos , Comunicação Interventricular/genética , China , Masculino , Feminino , Frequência do Gene , Estudos de Casos e Controles , Criança , Pré-Escolar , Lactente
2.
Int Heart J ; 65(4): 723-729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39085111

RESUMO

Congenital heart disease (CHD) accounts for nearly one-third of all major congenital anomalies, with atrial septal defect (ASD) and ventricular septal defect (VSD) being the most common forms of simple CHD, which involve a large number of susceptibility genes. However, despite extensive research, the etiology of ASD and VSD remains unclear. Yunnan Province has advantages in exploring CHD pathogenesis due to its unique genetic background. Therefore, we aimed to evaluate the association between single nucleotide polymorphisms (SNPs) of genes and susceptibility to simple CHD in a specific population by means of a case-control study. A total of 337 healthy controls and 767 patients with simple CHD (501 ASD and 266 VSD) from China were recruited. Candidate SNPs were identified through whole-genome sequencing of pooled CHD patients and controls (pool-seq). Genotyping from 1,104 samples was performed, and stratified analysis was conducted to explore the association between positive SNPs and CHD subtypes. χ2 tests and logistic regression were used to analyze the relationship between each SNP and simple CHD. Of 11 SNPs identified, SOD2 rs62437333 (P = 0.005) and POU5F1 rs3130504 (P = 0.017) showed differences between the control and ASD cohorts. In the dominant inheritance model hypothesis, rs62437333 allele C carriers had increased ASD (odds ratio (OR) = 2.04, P = 0.005) and combined simple CHD risk (OR = 2.33, P = 0.012) compared to DD genotype, while rs3130504 allele C carriers had increased ASD risk (OR = 1.121, P = 0.045) compared to DD genotype.


Assuntos
Povo Asiático , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase , Humanos , Masculino , Feminino , China/epidemiologia , Estudos de Casos e Controles , Superóxido Dismutase/genética , Povo Asiático/genética , Cardiopatias Congênitas/genética , Criança , Adulto , Pré-Escolar , Adolescente , Comunicação Interatrial/genética , Comunicação Interventricular/genética , Comunicação Interventricular/epidemiologia , Genótipo , População do Leste Asiático
3.
ChemSusChem ; : e202401183, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039627

RESUMO

Inorganic LiF is generally a desirable component in solid electrolyte interface (SEI) for graphite anode due to its electronic insulation, low Li+ diffusion barrier, high modulus and good chemical stability. Herein, fluorinated carbon (CFx) was incorporated into graphite material, which exhibited a high discharge potential prior to electrolyte decomposition and in-situ formed a crystalline LiF-based SEI with improved Li+ diffusion rate. The optimized graphite anode therefore demonstrated a fast-charging capability with 124 mAh g-1 at high rate of 8 C and a remarkable capacity retention of 83.8% at the low temperature of -30 oC compared to that at 25 oC. Furthermore, the optimized graphite|LiFePO4 full cell exhibited a significantly high discharge capacity of 109 mAh g-1 at -30 oC, corresponding to a notable 77.3% room-temperature capacity retention. These findings highlight a facile strategy to attain a LiF-rich SEI for high-performance lithium-ion batteries.

4.
Animals (Basel) ; 14(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39061597

RESUMO

This experiment investigated the effects of L-Methionine (L-Met) on growth performance, Met-metabolizing enzyme activity, feather traits, and small intestinal morphological characteristics, and compared these with DL-Methionine (DL-Met) for medium-growing, yellow-feathered broilers during the starter phase. Furthermore, the aim was to provide recommendations for the appropriate dietary Met levels in feed. A total of 1584 1-d broilers were randomly divided into 11 treatment groups with six replicates of 24 birds each: basal diet (CON, Met 0.28%), basal diet + L-Met (0.04%, 0.08%, 0.12%, 0.16%, 0.20%), and basal diet + DL-Met (0.04%, 0.08%, 0.12%, 0.16%, 0.20%). The total trial period was 30 days. Compared with broilers fed the basal diet, those fed 0.04 to 0.20% supplemental Met had higher final body weight (FBW), average daily feed intake (ADFI), average daily gain (ADG), and lower feed-to-gain ratio (F: G) (p < 0.05). Compared with DL-Met groups, the L-Met group had higher FBW and ADG (p < 0.05). The relative bioavailability (RBV) of L-Met in ADG of 1-30 d was 142.5%. Chicks fed diets supplemented with L-Met had longer fourth primary feather lengths compared to birds fed the control and diets supplemented with DL-Met (p < 0.05). Compared to the control, birds supplemented with DL-Met or L-Met had an increased moulting score (p ≤ 0.05). Chicks fed diets supplemented with L-Met had lower activities of methionine adenosyl transferase (MAT) compared to those fed the basal diet or supplemented with DL-Met (p < 0.05). Chicks supplemented with either DL-Met or L-Met had higher activities of cystathionine ß-synthase (CBS) than those fed the basal diet (p < 0.05). Compared with the control, chicks fed diets supplemented with either DL-Met or L-Met had an enhanced level of albumin in plasma (p < 0.05). There were no obvious differences in the plasma content of uric acid and total protein among the treatments (p > 0.05). Chicks fed diets supplemented with either DL-Met or L-Met had higher villus height and V/C in the duodenal than chicks fed the basal diet (p < 0.05). The jejunum morphology was not affected by either L-Met or DL-Met supplementation (p > 0.05). Therefore, dietary supplementation with DL-Met or L-Met improved the growth performance, feather traits, and intestinal morphological characteristics of medium-growing, yellow-feathered broiler chickens aged 1 to 30 d by decreasing the enzyme activities of Met methylation (MAT) and increasing the enzyme activities of the sulfur transfer pathway (CBS), and supplementation with L-Met showed a better improvement compared with DL-Met. The relative efficacy of L-Met to DL-Met was 142.5% for ADG of yellow-feathered broilers. The appropriate Met levels for medium-growing, yellow-feathered broilers are between 0.36~0.38% (supplementation with DL-Met) or 0.32~0.33% (supplementation with L-Met) when based on ADG and feed-to-gain ratio.

5.
Tissue Eng Regen Med ; 21(6): 943-957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937423

RESUMO

BACKGROUND: 3D-printing is widely used in regenerative medicine and is expected to achieve vaginal morphological restoration and true functional reconstruction. Mesenchymal stem cells-derived exosomes (MSCs-Exos) were applyed in the regeneration of various tissues. The current study aimed to explore the effctive of MSCs-Exos in vaginal reconstruction. METHODS: In this work, hydrogel was designed using decellularized extracellular matrix (dECM) and gelatin methacrylate (GelMA) and silk fibroin (SF). The biological scaffolds were constructed using desktop-stereolithography. The physicochemical properties of the hydrogels were evaluated; Some experiments have been conducted to evaluate exosomes' effect of promotion vaginal reconstruction and to explore the mechanism in this process. RESULTS: It was observed that the sustained release property of exosomes in the hydrogel both in vitro and in vitro.The results revealed that 3D scaffold encapsulating exosomes expressed significant effects on the vascularization and musule regeneration of the regenerative vagina tissue. Also, MSCs-Exos strongly promoted vascularization in the vaginal reconstruction of rats, which may through the PI3K/AKT signaling pathway. CONCLUSION: The use of exosome-hydrogel composites improved the epithelial regeneration of vaginal tissue, increased angiogenesis, and promoted smooth muscle tissue regeneration. 3D-printed, lumenal scaffold encapsulating exosomes might be used as a cell-free alternative treatment strategy for vaginal reconstruction.


Assuntos
Matriz Extracelular Descelularizada , Exossomos , Células-Tronco Mesenquimais , Impressão Tridimensional , Alicerces Teciduais , Vagina , Feminino , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Vagina/citologia , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Estereolitografia , Ratos , Hidrogéis/química , Ratos Sprague-Dawley , Regeneração , Procedimentos de Cirurgia Plástica/métodos , Gelatina/química , Humanos , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo
6.
J Colloid Interface Sci ; 671: 790-799, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38833911

RESUMO

The development of environmentally friendly and cost-effective photocatalysts is of vital significance for the effective removal of heavy metal contamination in water, but it is still a crucial challenge. Herein, the novel SbxBi2-xS3 solid solution photocatalysts with a certain amount of sulfur vacancy were prepared by adjusting the molar ratio of Sb to Bi through a simple hydrothermal strategy, and was applied to the effective photocatalytic reduction of hexavalent chromium (Cr(VI)). Sb1.75Bi0.25S3 with optimized ratio has superior reduction performance of Cr(VI), and the photocatalytic efficiency of Cr(VI) can achieve 91.9 % within 1 h of visible light illumination. The remarkable catalytic efficiency is due to the more applicable band structure of the solid solution photocatalyst, which is conducive for the photocatalytic reaction. Moreover, the substitution of Bi causes the crystal distortion of Sb2S3 and induce the generation of sulfur defects, which can effectively capture photoelectrons, accelerate the carriers separation, and improve the reduction performance. This study provides a hopeful photocatalyst for wastewater purification and promotes the exploration of solid solution photocatalyst in water environment remediation.

7.
Chem Commun (Camb) ; 60(53): 6809-6812, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38872605

RESUMO

A dual-additive-based aqueous electrolyte was designed with a pH-buffering additive (Zn(OAc)2) and an electrostatic shielding additive (TMAOAc) for high Zn plating/stripping efficiency. The buffering pair, OAc-/HOAc, can stabilize the pH value to suppress side hydrogen evolution reactions. Meanwhile, TMA+ acts as a competitive cation being preferentially adsorbed on the uneven surface of the Zn anode and exerts an electrostatic shielding effect to facilitate flat Zn deposition. Such a dual-additive-based electrolyte promotes an ultra-high Zn plating/stripping efficiency of 99.9% at 1 mA cm-2 and long-term cycling stability for 3600 h at 0.5 mA cm-2, offering valuable insights for advanced aqueous batteries.

8.
Trends Ecol Evol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38862356

RESUMO

We develop a conceptual framework for geo-evolutionary feedbacks which describes the mutual interplay between landscape change and the evolution of traits of organisms residing on the landscape, with an emphasis on contemporary timeframes. Geo-evolutionary feedbacks can be realized via the direct evolution of geomorphic engineering traits or can be mediated by the evolution of trait variation that affects the population size and distribution of the specific geomorphic engineering organisms involved. Organisms that modify their local environments provide the basis for patch-scale geo-evolutionary feedbacks, whereas spatial self-organization provides a mechanism for geo-evolutionary feedbacks at the landscape scale. Understanding these likely prevalent geo-evolutionary feedbacks, that occur at timescales similar to anthropogenic climate change, will be essential to better predict landscape adaptive capacity and change.

9.
J Transl Med ; 22(1): 458, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750454

RESUMO

BACKGROUND: Corneal injuries, often leading to severe vision loss or blindness, have traditionally been treated with the belief that limbal stem cells (LSCs) are essential for repair and homeostasis, while central corneal epithelial cells (CCECs) were thought incapable of such repair. However, our research reveals that CCECs can fully heal and maintain the homeostasis of injured corneas in rats, even without LSCs. We discovered that CXCL14, under PAX6's influence, significantly boosts the stemness, proliferation, and migration of CCECs, facilitating corneal wound healing and homeostasis. This finding introduces CXCL14 as a promising new drug target for corneal injury treatment. METHODS: To investigate the PAX6/CXCL14 regulatory axis's role in CCECs wound healing, we cultured human corneal epithelial cell lines with either increased or decreased expression of PAX6 and CXCL14 using adenovirus transfection in vitro. Techniques such as coimmunoprecipitation, chromatin immunoprecipitation, immunofluorescence staining, western blot, real-time PCR, cell colony formation, and cell cycle analysis were employed to validate the axis's function. In vivo, a rat corneal epithelial injury model was developed to further confirm the PAX6/CXCL14 axis's mechanism in repairing corneal damage and maintaining corneal homeostasis, as well as to assess the potential of CXCL14 protein as a therapeutic agent for corneal injuries. RESULTS: Our study reveals that CCECs naturally express high levels of CXCL14, which is significantly upregulated by PAX6 following corneal damage. We identified SDC1 as CXCL14's receptor, whose engagement activates the NF-κB pathway to stimulate corneal repair by enhancing the stemness, proliferative, and migratory capacities of CCECs. Moreover, our research underscores CXCL14's therapeutic promise for corneal injuries, showing that recombinant CXCL14 effectively accelerates corneal healing in rat models. CONCLUSION: CCECs play a critical and independent role in the repair of corneal injuries and the maintenance of corneal homeostasis, distinct from that of LSCs. The PAX6/CXCL14 regulatory axis is pivotal in this process. Additionally, our research demonstrates that the important function of CXCL14 in corneal repair endows it with the potential to be developed into a novel therapeutic agent for treating corneal injuries.


Assuntos
Proliferação de Células , Quimiocinas CXC , Lesões da Córnea , Epitélio Corneano , Fator de Transcrição PAX6 , Cicatrização , Animais , Humanos , Masculino , Ratos , Linhagem Celular , Movimento Celular , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Células Epiteliais/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/metabolismo , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Ratos Sprague-Dawley
10.
Animal Model Exp Med ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807299

RESUMO

BACKGROUND: Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis. METHODS: We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI. RESULTS: We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas. CONCLUSION: Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.

11.
Small ; 20(31): e2311197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593375

RESUMO

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

12.
Biomed Pharmacother ; 174: 116518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565057

RESUMO

BACKGROUND: The Calcium-sensing receptor (CaSR) participates in the regulation of gastrointestinal (GI) motility under normal conditions and might be involved in the regulation of GI dysmotility in patients with Parkinson's disease (PD). METHODS: CaSR antagonist-NPS-2143 was applied in in vivo and ex vivo experiments to study the effect and underlying mechanisms of CaSR inhibition on GI dysmotility in the MPTP-induced PD mouse model. FINDINGS: Oral intake of NPS-2143 promoted GI motility in PD mice as shown by the increased gastric emptying rate and shortened whole gut transit time together with improved weight and water content in the feces of PD mice, and the lack of influence on normal mice. Meanwhile, the number of cholinergic neurons, the proportion of serotonergic neurons, as well as the levels of acetylcholine and serotonin increased, but the numbers of nitrergic and tyrosine hydroxylase immunoreactive neurons, and the levels of nitric oxide synthase and dopamine decreased in the myenteric plexus in the gastric antrum and colon of PD mice in response to NPS-2143 treatment. Furthermore, the numbers of c-fos positive neurons in the nucleus tractus solitarius (NTS) and cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) increased in NPS-2143 treated PD mice, suggesting the involvement of both the enteric (ENS) and central (CNS) nervous systems. However, ex vivo results showed that NPS-2143 directly inhibited the contractility of antral and colonic strips in PD mice via a non-ENS mediated mechanism. Further studies revealed that NPS-2143 directly inhibited the voltage gated Ca2+ channels, which might, at least in part, explain its direct inhibitory effects on the GI muscle strips. INTERPRETATION: CaSR inhibition by its antagonist ameliorated GI dysmotility in PD mice via coordinated neuronal regulation by both ENS and CNS in vivo, although the direct effects of CaSR inhibition on GI muscle strips were suppressive.


Assuntos
Motilidade Gastrointestinal , Naftalenos , Doença de Parkinson , Receptores de Detecção de Cálcio , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Esvaziamento Gástrico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/metabolismo
13.
Nat Commun ; 15(1): 3217, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622141

RESUMO

Commonly-used ether and carbonate electrolytes show distinct advantages in active lithium-metal anode and high-voltage cathode, respectively. While these complementary characteristics hold promise for energy-dense lithium metal batteries, such synergy cannot be realized solely through physical blending. Herein, a linear functionalized solvent, bis(2-methoxyethyl) carbonate (BMC), is conceived by intramolecularly hybridizing ethers and carbonates. The integration of the electron-donating ether group with the electron-withdrawing carbonate group can rationalizes the charge distribution, imparting BMC with notable oxidative/reductive stability and relatively weak solvation ability. Furthermore, BMC also offers advantages including the ability to slightly dissolve LiNO3, excellent thermostability and nonflammability. Consequently, the optimized BMC-based electrolyte, even with typical concentrations in the single solvent, demonstrates high-voltage tolerance (4.4 V) and impressive Li plating/stripping Coulombic efficiency (99.4%). Moreover, it fulfills practical lithium metal batteries with satisfactory cycling performance and exceptional tolerance towards thermal/mechanical abuse, showcasing its suitability for safe high-energy lithium metal batteries.

14.
Anim Nutr ; 16: 313-325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362516

RESUMO

The present study was to explore the Ile requirement of piglets fed 18% crude protein (CP) diets. Two hundred and fifty 28-day-old Duroc × Landrace × Yorkshire piglets (8.37 ± 1.92 kg) were randomly divided into 5 dietary treatments (10 piglets per replicate, 5 barrows and 5 gilts per replicate) with 45%, 50%, 55%, 60%, 65% standardized ileal digestible (SID) Ile-to-Lys ratios, and the SID Lys was formulated to 1.19%. The experimental design consisted of two phases (d 1 to 14 and d 15 to 28). Results showed that average daily gain (ADG) had a tendency to quadratically increase as the SID Ile-to-Lys ratio increased (P = 0.09), and the optimum SID Ile-to-Lys ratios required to maximize ADG were 48.33% and 54.63% for broken-line linear model and quadratic polynomial model, respectively. Different SID Ile-to-Lys ratios had no significant effects on average daily feed intake and gain-to-feed ratio. Dry matter (P < 0.01), CP (P = 0.01), ether extract (P = 0.04), gross energy (P < 0.01) and organic matter (P < 0.01) digestibility increased quadratically. Serum total cholesterol levels decreased linearly (P = 0.01) and quadratically (P < 0.01); aspartate aminotransferase (P < 0.01), interleukin-1ß (P = 0.01), and tumor necrosis factor-α (P < 0.01) levels decreased quadratically; immunoglobulin G (P = 0.03) and immunoglobulin M (P = 0.01) concentrations increased quadratically. Serum Ser levels decreased linearly (P < 0.01) and quadratically (P = 0.01); Glu (P = 0.02), Arg (P = 0.05), and Thr (P = 0.03) levels decreased quadratically; Gly (P < 0.01) and Leu (P = 0.01) levels decreased linearly; Ile (P < 0.01) concentration increased linearly. Duodenal villus height (P < 0.01) and villus height to crypt depth ratio (P < 0.01) increased quadratically. The deficiency or excess of Ile decreased short chain fatty acid-producing bacteria abundance and increased pathogenic bacteria abundance. Overall, taking ADG as the effect index, the optimum SID Ile-to-Lys ratios of piglets offered 18% CP diets were 48.33% and 54.63% based on two different statistical models, respectively, and the deficiency or excess of lle negatively affected piglet growth rates and health status.

15.
ACS Appl Mater Interfaces ; 16(6): 7374-7383, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315023

RESUMO

Co-N-C based catalysts have emerged as a prospective alternative for H2O2 electrosynthesis via a selective 2e- oxygen reduction reaction (ORR). However, conventional Co-N-C with Co-N4 configurations usually exhibits low selectivity toward 2e- ORR for H2O2 production. In this study, the S-doped Co-N-C (Co-N-C@S) catalysts were designed and synthesized for enhancing the electrosynthesis of H2O2, and their S doping levels and species were tuned to investigate their relationship with the H2O2 yield. The results showed that the S doping greatly enhanced the activity and selectivity of Co-N-C@S for H2O2 production. The optimal Co-N-C@S(12) displayed a high H2O2 production rate of 395 mmol gcat-1 h-1, H2O2 selectivity of 76.06%, and Faraday efficiency of 91.66% at 0.2 V, which were obviously better than those of Co-N-C (H2O2 production rate of 44 mmol gcat-1 h-1, H2O2 selectivity of 26.63%, and Faraday efficiency of 17.37%). Moreover, the Co-N-C@S(12) based electron-Fenton system displayed effective rhodamine B (RhB) removal, significantly outperforming the Co-N-C-based system. Experimental results combined with density functional theory unveiled that the enhanced performance of Co-N-C@S(12) stemmed from the combined effect of Co-S and thiophene S, which jointly enhanced electron density of the Co center, reduced the desorption energy of the *OOH intermediate, and then promoted the production of H2O2.

16.
Phytomedicine ; 126: 155435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394727

RESUMO

BACKGROUND: Accumulating evidence indicates the crucial role of microglia-mediated inflammation and the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in the pathogenesis of Parkinson's disease (PD). Baohuoside I, a natural flavonoid extracted from Herba Epimedii, has been shown to possess anti-inflammatory effects, but its potential neuroprotective effects and mechanism against PD have not been documented. STUDY DESIGN AND METHODS: The anti-inflammatory effects of Baohuoside I were evaluated by LPS-induced BV2 cells or primary microglia isolated from wide type or G protein-coupled estrogen receptor (GPER) gene knockout mice. The underlying mechanism related to GPER-mediated NLRP3 inflammasome inhibition was further explored using LPS-induced GPER+/+ or GPER-/- mouse models of PD. The neuroprotective effects of Baohuoside I were detected through western blot analysis, real-time PCR, molecular docking, mouse behavioral tests, immunofluorescence, and immunohistochemistry. RESULTS: Baohuoside I significantly alleviated LPS-induced neuroinflammation by inhibiting the activation of NF-κB signal and the increase of pyroptosis levels as evidenced by the downregulated expression of pyroptosis-related proteins (NLRP3, ASC, pro-Caspase-1, IL-1ß) in microglia cells. Intragastric administration of Baohuoside I protected against LPS-induced motor dysfunction and loss of dopaminergic neurons, reduced pro-inflammatory cytokines expressions, and inhibited microglial (Iba-1) and astrocyte (GFAP) activation in the nigrostriatal pathway in LPS-induced mouse model of PD. Pretreatment with GPER antagonist G15 in microglia cells or GPER gene deletion in mice significantly blocked the inhibitory effects of Baohuoside I on LPS-induced neuroinflammation and activation of the NLRP3/ASC/Caspase-1 pathway. Molecular docking further indicated that Baohuoside I might bind to GPER directly with a binding energy of -10.4 kcal/mol. CONCLUSION: Baohuoside I provides neuroprotective effects against PD by inhibiting the activation of the NF-κB signal and NLRP3/ASC/Caspase-1 pathway. The molecular target for its anti-inflammatory effects is proved to be GPER in the PD mouse model. Baohuoside I may be a valuable anti-neuroinflammatory agent and a drug with well-defined target for the treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Caspases/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Microglia , Camundongos Endogâmicos C57BL
17.
Small ; 20(1): e2304558, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649197

RESUMO

Near-neutral zinc-air batteries (ZABs) have garnered significant research interest due to their high energy density, exceptional electrochemical reversibility, and adaptability to ambient air. However, these batteries suffer from substantial electrochemical polarization, low energy efficiency, and poor rate performance. In this study, a mesoporous carbon (meso-C) with a high specific surface area (1081 m2 g-1 ) and abundant porous structure for the cathode of near-neutral ZABs using a scalable synthesis method is prepared. The meso-C-based cathode is endowed with stable hydrophobicity and abundant electrochemical active sites, which considerably improve the energy efficiency, rate performance, and cycle life of the battery compare to commercial carbon black-based cathode when applied to near-neutral ZABs with 1 mol kg-1 (1 m) zinc acetate and 1 m zinc trifluoromethanesulfonate electrolytes. Additionally, the mesopores of meso-C facilitate the construction of better three-phase reaction interfaces and contribute to better electrochemical reversibility. The work presents a general and scalable approach for carbon materials in the cathode of near-neutral ZABs.

18.
Proc Natl Acad Sci U S A ; 120(51): e2313487120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096416

RESUMO

This study investigates mechanisms that generate regularly spaced iron-rich bands in upland soils. These striking features appear in soils worldwide, but beyond a generalized association with changing redox, their genesis is yet to be explained. Upland soils exhibit significant redox fluctuations driven by rainfall, groundwater changes, or irrigation. Pattern formation in such systems provides an opportunity to investigate the temporal aspects of spatial self-organization, which have been heretofore understudied. By comparing multiple alternative mechanisms, we found that regular iron banding in upland soils is explained by coupling two sets of scale-dependent feedbacks, the general principle of Turing morphogenesis. First, clay dispersion and coagulation in iron redox fluctuations amplify soil Fe(III) aggregation and crystal growth to a level that negatively affects root growth. Second, the activation of this negative root response to highly crystalline Fe(III) leads to the formation of rhythmic iron bands. In forming iron bands, environmental variability plays a critical role. It creates alternating anoxic and oxic conditions for required pattern-forming processes to occur in distinctly separated times and determines durations of anoxic and oxic episodes, thereby controlling relative rates of processes accompanying oxidation and reduction reactions. As Turing morphogenesis requires ratios of certain process rates to be within a specific range, environmental variability thus modifies the likelihood that pattern formation will occur. Projected changes of climatic regime could significantly alter many spatially self-organized systems, as well as the ecological functioning associated with the striking patterns they present. This temporal dimension of pattern formation merits close attention in the future.

19.
Drug Des Devel Ther ; 17: 3749-3756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125207

RESUMO

Purpose: This study was performed to evaluate the effects of intraoperative intravenous lidocaine on postoperative delirium in elderly patients with hip fracture. Patients and methods: In total, 100 elderly patients undergoing hip fracture surgery were randomized to the lidocaine group (Group L) or saline (control) group (Group C). Before anesthetic induction, Group L received lidocaine at 1 mg/kg for more than 10 minutes followed by continuous infusion at 1.5 mg/kg/h until the end of surgery. Group C received normal saline, and the injection methods were consistent with those in Group L. General anesthesia was induced with propofol, sufentanil, and cis-atracurium. Anesthesia was maintained by propofol and remifentanil. The primary outcome was the incidence of postoperative delirium in the first 7 postoperative days. The secondary outcomes included the severity of delirium, onset and duration of delirium, emergence agitation, adverse events, total propofol dose, intraoperative opioid dosage, length of post-anesthesia care unit stay, extubation time, and patient satisfaction with postoperative pain management. Results: All 100 patients completed the study. The incidence of postoperative delirium was lower in Group L than in Group C (14% vs 36%, P = 0.011). The delirium severity scores were lower in Group L (3 [3-4]) than in Group C (4 [4-5]) (P = 0.017). In addition, the incidences of hypertension, tachycardia, and emergence agitation were significantly lower in Group L than in Group C. No cases of local anesthetic toxicity occurred in either group. Conclusion: Patients received lidocaine at 1 mg/kg for more than 10 minutes followed by continuous infusion at 1.5 mg/kg/h until the end of surgery, which can reduce the incidence of postoperative delirium in elderly patients undergoing hip fracture. In addition, the used regimen of lidocaine would not increase the risk of local anesthetic toxicity.


Assuntos
Delírio do Despertar , Lidocaína , Idoso , Humanos , Anestésicos Locais/toxicidade , Delírio do Despertar/prevenção & controle , Lidocaína/farmacologia , Propofol , Estudos Prospectivos , Fraturas do Quadril/cirurgia
20.
Microbiol Spectr ; 11(6): e0221723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819096

RESUMO

IMPORTANCE: Biotechnology applications utilizing the function of microbial communities have become increasingly important solutions as we strive for sustainable applications. Although viral infections are known to have a significant impact on microbial turnover and nutrient cycling, viral dynamics have remained largely overlooked in these engineered communities. Predatory perturbations to the functional stability of these microbial biotechnology applications must be investigated in order to design more robust applications. In this study, we closely examine virus-microbe dynamics in a model microbial community used in a biotechnology application. Our findings suggest that viral dynamics change significantly with environmental conditions and that microbial immunity may play an important role in maintaining functional stability. We present this study as a comprehensive template for other researchers interested in exploring predatory dynamics in engineered microbial communities.


Assuntos
Cianobactérias , Vírus , Sistemas CRISPR-Cas , Cianobactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA