Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2220496120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064514

RESUMO

Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cílios , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cílios/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células HEK293
2.
Mol Biomed ; 4(1): 33, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840106

RESUMO

Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.

3.
Front Immunol ; 13: 1011484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439096

RESUMO

Development of safe and efficient vaccines is still necessary to deal with the COVID-19 pandemic. Herein, we reported that yeast-expressed recombinant RBD proteins either from wild-type or Delta SARS-CoV-2 were able to elicit immune responses against SARS-CoV-2 and its variants. The wild-type RBD (wtRBD) protein was overexpressed in Pichia pastoris, and the purified protein was used as the antigen to immunize mice after formulating an aluminium hydroxide (Alum) adjuvant. Three immunization programs with different intervals were compared. It was found that the immunization with an interval of 28 days exhibited the strongest immune response to SARS-CoV-2 than the one with an interval of 14 or 42 days based on binding antibody and the neutralizing antibody (NAb) analyses. The antisera from the mice immunized with wtRBD were able to neutralize the Beta variant with a similar efficiency but the Delta variant with 2~2.5-fold decreased efficiency. However, more NAbs to the Delta variant were produced when the Delta RBD protein was used to immunize mice. Interestingly, the NAbs may cross react with the Omicron variant. To increase the production of NAbs, the adjuvant combination of Alum and CpG oligonucleotides was used. Compared with the Alum adjuvant alone, the NAbs elicited by the combined adjuvants exhibited an approximate 10-fold increase for the Delta and a more than 53-fold increase for the Omicron variant. This study suggested that yeast-derived Delta RBD is a scalable and an effective vaccine candidate for SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Vacinas Virais , Camundongos , Humanos , Animais , SARS-CoV-2 , Saccharomyces cerevisiae , Vacinas contra COVID-19 , Pandemias , Camundongos Endogâmicos BALB C , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Proteínas Recombinantes , Imunidade
4.
Bioessays ; 44(12): e2100261, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285664

RESUMO

The asymmetric distribution of lipids, maintained by flippases/floppases and scramblases, plays a pivotal role in various physiologic processes. Scramblases are proteins that move phospholipids between the leaflets of the lipid bilayer of the cellular membrane in an energy-independent manner. Recent studies have indicated that viral infection is closely related to cellular lipid distribution. The level and distribution of phosphatidylserine (PtdSer) in cells have been demonstrated to be critical regulators of viral infections. Previous studies have supported that the infection of human immunodeficiency virus (HIV), Zika virus, Ebola virus (EBOV), influenza virus, and dengue fever virus require the externalization of phospholipids mediated by scramblases, which are also involved in the pathogenicity of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we review the relationship of scramblases with viruses and the potential viral effector proteins that might utilize host scramblases.


Assuntos
COVID-19 , Viroses , Infecção por Zika virus , Zika virus , Humanos , SARS-CoV-2 , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo
5.
Autophagy ; 17(8): 2048-2050, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074213

RESUMO

TMEM41B and VMP1, two endoplasmic reticulum (ER)-resident transmembrane proteins, play important roles in regulating the formation of lipid droplets (LDs), autophagy initiation, and viral infection. However, the biochemical functions of TMEM41B and VMP1 are unclear. A lipids distribution screen suggested TMEM41B and VMP1 are critical to the normal distribution of cholesterol and phosphatidylserine. Biochemical analyses unveiled that TMEM41B and VMP1 have scramblase activity. These findings shed light on the mechanism by which TMEM41B and VMP1 regulate LD formation, lipids distribution, macroautophagy, and viral infection.


Assuntos
Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Autofagossomos/metabolismo , Humanos , Macroautofagia/fisiologia
6.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33929485

RESUMO

TMEM41B and VMP1 are integral membrane proteins of the endoplasmic reticulum (ER) and regulate the formation of autophagosomes, lipid droplets (LDs), and lipoproteins. Recently, TMEM41B was identified as a crucial host factor for infection by all coronaviruses and flaviviruses. The molecular function of TMEM41B and VMP1, which belong to a large evolutionarily conserved family, remains elusive. Here, we show that TMEM41B and VMP1 are phospholipid scramblases whose deficiency impairs the normal cellular distribution of cholesterol and phosphatidylserine. Their mechanism of action on LD formation is likely to be different from that of seipin. Their role in maintaining cellular phosphatidylserine and cholesterol homeostasis may partially explain their requirement for viral infection. Our results suggest that the proper sorting and distribution of cellular lipids are essential for organelle biogenesis and viral infection.


Assuntos
Autofagossomos , Autofagia , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA