Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Physiol ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704841

RESUMO

Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.

2.
Am J Physiol Heart Circ Physiol ; 324(1): H155-H171, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459446

RESUMO

On the one hand, lymphatic dysfunction induces interstitial edema and inflammation. On the other hand, the formation of edema and inflammation induce lymphatic dysfunction. However, informed by the earlier reports of undetected apoptosis of irradiated lymphatic endothelial cells (LECs) in vivo, lymphatic vessels are commonly considered inconsequential to ionizing radiation (IR)-induced inflammatory injury to normal tissues. Primarily because of the lack of understanding of the acute effects of IR exposure on lymphatic function, acute edema and inflammation, common sequelae of IR exposure, have been ascribed solely to blood vessel damage. Therefore, in the present study, the lymphatic acute responses to IR exposure were quantified to evaluate the hypothesis that IR exposure impairs lymphatic pumping. Rat mesenteric lymphatic vessels were irradiated in vivo or in vitro, and changes in pumping were quantified in isolated vessels in vitro. Compared with sham-treated vessels, pumping was lowered in lymphatic vessels irradiated in vivo but increased in vessels irradiated in vitro. Furthermore, unlike in blood vessels, the acute effects of IR exposure in lymphatic vessels were not mediated by nitric oxide-dependent pathways in either in vivo or in vitro irradiated vessels. After cyclooxygenase blockade, pumping was partially restored in lymphatic vessels irradiated in vitro but not in vessels irradiated in vivo. Taken together, these findings demonstrated that lymphatic vessels are radiosensitive and LEC apoptosis alone may not account for all the effects of IR exposure on the lymphatic system.NEW & NOTEWORTHY Earlier studies leading to the common belief that lymphatic vessels are radioresistant either did not characterize lymphatic pumping, deemed necessary for the resolution of edema and inflammation, or did it in vivo. By characterizing pumping in vitro, the present study, for the first time, demonstrated that lymphatic pumping was impaired in vessels irradiated in vivo and enhanced in vessels irradiated in vitro. Furthermore, the pathways implicated in ionizing radiation-induced blood vessel damage did not mediate lymphatic responses.


Assuntos
Células Endoteliais , Vasos Linfáticos , Ratos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Inflamação/metabolismo , Radiação Ionizante , Edema/metabolismo
3.
JACC Basic Transl Sci ; 6(11): 872-881, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34869951

RESUMO

Removal of excess fluid in acute decompensated heart failure (ADHF) targets the intravascular space, whereas most fluid resides in the interstitial space. The authors evaluated an approach to interstitial decongestion using a device to enhance lymph flow. The device was deployed in sheep with induced heart failure (HF) and acute volume overload to create a low-pressure zone at the thoracic duct outlet. Treatment decreased extravascular lung water (EVLW) volume (mL/kg) (-32% ± 9%, P = 0.029) compared to controls (+46% ± 9%, P = 0.003). Device-mediated thoracic duct decompression effectively reduced EVLW. Human studies may establish device-based interstitial decongestion as a new ADHF treatment.

4.
Acta Physiol (Oxf) ; 232(4): e13656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33793057

RESUMO

AIM: Fluid and macromolecule transport from the interstitium into and through lymphatic vessels is necessary for tissue homeostasis. While lymphatic capillary structure suggests that passive, paracellular transport would be the predominant route of macromolecule entry, active caveolae-mediated transcellular transport has been identified in lymphatic endothelial cells (LECs) in vitro. Caveolae also mediate a wide array of endothelial cell processes, including nitric oxide regulation. Thus, how does the lack of caveolae impact "lymphatic function"? METHODS: Various aspects of lymphatic transport were measured in mice constitutively lacking caveolin-1 ("CavKO"), the protein required for caveolae formation in endothelial cells, and in mice with a LEC-specific Cav1 gene deletion (Lyve1-Cre x Cav1flox/flox ; "LyCav") and ex vivo in their vessels and cells. RESULTS: In each model, lymphatic architecture was largely unchanged. The lymphatic conductance, or initial tissue uptake, was significantly higher in both CavKO mice and LyCav mice by quantitative microlymphangiography and the permeability to 70 kDa dextran was significantly increased in monolayers of LECs isolated from CavKO mice. Conversely, transport within the lymphatic system to the sentinel node was significantly reduced in anaesthetized CavKO and LyCav mice. Isolated, cannulated collecting vessel studies identified significantly reduced phasic contractility when lymphatic endothelium lacks caveolae. Inhibition of nitric oxide synthase was able to partially restore ex vivo vessel contractility. CONCLUSION: Macromolecule transport across lymphatics is increased with loss of caveolae, yet phasic contractility reduced, resulting in reduced overall lymphatic transport function. These studies identify lymphatic caveolar biology as a key regulator of active lymphatic transport functions.


Assuntos
Cavéolas , Vasos Linfáticos , Animais , Cavéolas/metabolismo , Caveolina 1 , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Camundongos , Óxido Nítrico Sintase/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R722-R729, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32023079

RESUMO

The role of the hepatic transudation barrier in determining ascites volume and protein content in chronic liver disease is poorly understood. Therefore, the purpose of the present study was to characterize how chronic sinusoidal hypertension impacts hepatic transudation barrier properties and the transudation rate. The suprahepatic inferior vena cava was surgically constricted, and animals were exposed to either short-term (SVH; 2-3 wk) or long-term venous hypertension (LVH; 5-6 wk). Compared with SVH, LVH resulted in lower peritoneal fluid pressure, ascites volume, and ascites protein concentration. The transudation barrier protein reflection coefficient was significantly higher, and the transudation barrier hydraulic conductivity, transudation rate, and transudate-to-lymph protein concentration ratio were significantly lower in LVH animals compared with SVH animals. The sensitivity of transudation rates to acute changes in interstitial fluid pressures was also significantly lower in LVH animals compared with SVH animals. In contrast, there was no detectable difference in hepatic lymph flow rate or sensitivity of lymph flow to acute changes in interstitial fluid pressures between SVH and LVH animals. Taken together, these data suggest that decreased hepatic transudation barrier permeability to fluid and protein and increased reflection coefficient led to a decrease in the hepatic contribution to ascites volume. The present work, to the best of our knowledge, is the first to quantify an anti-ascites adaptation of the hepatic transudation barrier in response to chronic hepatic sinusoidal hypertension.


Assuntos
Adaptação Fisiológica , Constrição Patológica/cirurgia , Hipertensão/etiologia , Fígado/fisiopatologia , Animais , Ascite/fisiopatologia , Cães , Exsudatos e Transudatos , Masculino
6.
Microcirculation ; 25(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29047195

RESUMO

OBJECTIVE: Fluid and protein continuously transude from the surface of the liver. Despite a common understanding that transudation plays a critical role in hepatic interstitial and peritoneal fluid balance, transudation from the entire liver has not been studied. Therefore, the goal of the present work was to provide the first direct measurement of the hepatic transudation rate and transudation barrier properties. METHODS: Transudation rates were determined by collecting transudate from the entire liver. Hydraulic conductivity, and fluid transudation and protein reflection coefficients of the transudation barrier (formed by the subscapular interstitial matrix, capsule, and peritoneum) were determined from changes in fluid and protein transudation rates in response to hepatic venous pressure elevation. RESULTS: Following hepatic venous pressure elevation from 6.1 ± 0.9 to 11.1 ± 0.6 mm Hg, transudation rate increased from 0.13 ± 0.03 to 0.37 ± 0.03 mL/min·100 g. Transudation barrier hydraulic conductivity, fluid transudation and protein reflection coefficients (3.9 × 10-4  ± 5.7 × 10-5  mL/min·mm Hg·cm2 , 0.36 ± 0.04 mL/min·mm Hg, and 0.09 ± 0.03, respectively) were comparable to those reported for hepatic sinusoids. CONCLUSIONS: Taken together, these findings suggest that the hepatic transudation barrier is highly permeable at elevated sinusoidal pressures. These fundamental studies provide a better understanding of the hepatic transudation barrier properties and transudation under conditions that are physiologically and clinically relevant to ascites formation.


Assuntos
Exsudatos e Transudatos/metabolismo , Fígado/metabolismo , Pressão Venosa/fisiologia , Animais , Ascite , Permeabilidade Capilar/fisiologia , Humanos , Cinética
7.
Am J Physiol Regul Integr Comp Physiol ; 306(12): R901-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24671245

RESUMO

Lymph flow is the primary mechanism for returning interstitial fluid to the blood circulation. Currently, the adaptive response of lymphatic vessels to mesenteric venous hypertension is not known. This study sought to determine the functional responses of postnodal mesenteric lymphatic vessels. We surgically occluded bovine mesenteric veins to create mesenteric venous hypertension to elevate mesenteric lymph flow. Three days after surgery, postnodal mesenteric lymphatic vessels from mesenteric venous hypertension (MVH; n = 7) and sham surgery (Sham; n = 6) group animals were evaluated and compared. Contraction frequency (MVH: 2.98 ± 0.75 min(-1); Sham: 5.42 ± 0.81 min(-1)) and fractional pump flow (MVH: 1.14 ± 0.30 min(-1); Sham: 2.39 ± 0.32 min(-1)) were significantly lower in the venous occlusion group. These results indicate that postnodal mesenteric lymphatic vessels adapt to mesenteric venous hypertension by reducing intrinsic contractile activity.


Assuntos
Adaptação Fisiológica/fisiologia , Bovinos/fisiologia , Hipertensão/fisiopatologia , Vasos Linfáticos/fisiologia , Mesentério/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Linfa/fisiologia , Sistema Linfático/fisiologia , Veias Mesentéricas/fisiopatologia , Microcirculação/fisiologia , Fatores de Tempo , Equilíbrio Hidroeletrolítico/fisiologia
8.
Microcirculation ; 19(8): 714-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22708850

RESUMO

OBJECTIVE: Although the causal relationship between acute myocardial edema and cardiac dysfunction has been established, resolution of myocardial edema and subsequent recovery of cardiac function have not been established. The time to resolve myocardial edema and the degree that cardiac function is depressed after edema resolves are not known. We therefore characterized temporal changes in cardiac function as acute myocardial edema formed and resolved. METHODS: Acute myocardial edema was induced in the canine model by elevating coronary sinus pressure for three hours. Myocardial water content and cardiac function were determined before and during coronary sinus pressure elevation, and after coronary sinus pressure restoration. RESULTS: Although no change in systolic properties was detected, accumulation of water in myocardial interstitium was associated with increased diastolic stiffness. When coronary sinus pressure was relieved, myocardial edema resolved within 180 minutes. Diastolic stiffness, however, remained significantly elevated compared with baseline values, and cardiac function remained compromised. CONCLUSIONS: The present work suggests that the cardiac dysfunction caused by the formation of myocardial edema may persist after myocardial edema resolves. With the advent of new imaging techniques to quantify myocardial edema, this insight provides a new avenue for research to detect and treat a significant cause of cardiac dysfunction.


Assuntos
Pressão Sanguínea , Seio Coronário/metabolismo , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Água/metabolismo , Animais , Distinções e Prêmios , Seio Coronário/patologia , Cães , Edema , Miocárdio/patologia , Fatores de Tempo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
9.
Am J Physiol Regul Integr Comp Physiol ; 302(12): R1436-42, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22513742

RESUMO

Venomotion, spontaneous cyclic contractions of venules, was first observed in the bat wing 160 years ago. Of all the functional roles proposed since then, propulsion of blood by venomotion remains the most controversial. Common animal models that require anesthesia and surgery have failed to provide evidence for venular pumping of blood. To determine whether venomotion actively pumps blood in a minimally invasive, unanesthetized animal model, we reintroduced the batwing model. We evaluated the temporal and functional relationship between the venous contraction cycle and blood flow and luminal pressure. Furthermore, we determined the effect of inhibiting venomotion on blood flow. We found that the active venous contractions produced an increase in the blood flow and exhibited temporal vessel diameter-blood velocity and pressure relationships characteristic of a peristaltic pump. The presence of valves, a characteristic of reciprocating pumps, enhances the efficiency of the venular peristaltic pump by preventing retrograde flow. Instead of increasing blood flow by decreasing passive resistance, venular dilation with locally applied sodium nitroprusside decreased blood flow. Taken together, these observations provide evidence for active venular pumping of blood. Although strong venomotion may be unique to bats, venomotion has also been inferred from venous pressure oscillations in other animal models. The conventional paradigm of microvascular pressure and flow regulation assumes venules only act as passive resistors, a proposition that must be reevaluated in the presence of significant venomotion.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Vênulas/fisiologia , Asas de Animais/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Quirópteros , Nitroprussiato/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Vasodilatadores/farmacologia , Vênulas/efeitos dos fármacos
10.
Cardiovasc Res ; 87(2): 331-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20472566

RESUMO

The heart, perhaps more than any other organ, is exquisitely sensitive to increases in microvascular permeability and the accumulation of myocardial interstitial oedema fluid. Whereas some organs can cope with profound increases in the interstitial fluid volume or oedema formation without a compromise in function, heart function is significantly compromised with only a few percent increase in the interstitial fluid volume. This would be of little consequence if myocardial oedema were an uncommon pathology. On the contrary, myocardial oedema forms in response to many disease states as well as clinical interventions such as cardiopulmonary bypass and cardioplegic arrest common to many cardiothoracic surgical procedures. The heart's inability to function effectively in the presence of myocardial oedema is further confounded by the perplexing fact that the resolution of myocardial oedema does not restore normal cardiac function. We will attempt to provide some insight as to how microvascular permeability and myocardial oedema formation compromise cardiac function and discuss the acute changes that might take place in the myocardium to perpetuate compromised cardiac function following oedema resolution. We will also discuss compensatory changes in the interstitial matrix of the heart in response to chronic myocardial oedema and the role they play to optimize myocardial function during chronic oedemagenic disease.


Assuntos
Líquidos Corporais/metabolismo , Permeabilidade Capilar , Vasos Coronários/metabolismo , Edema Cardíaco/metabolismo , Microvasos/metabolismo , Miocárdio/metabolismo , Função Ventricular , Animais , Vasos Coronários/fisiopatologia , Diagnóstico por Imagem/métodos , Edema Cardíaco/diagnóstico , Edema Cardíaco/fisiopatologia , Hemodinâmica , Humanos , Microvasos/fisiopatologia , Modelos Cardiovasculares , Contração Miocárdica , Valor Preditivo dos Testes , Transdução de Sinais
11.
Am J Physiol Heart Circ Physiol ; 296(6): H2015-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329767

RESUMO

In skin, it is believed that lymph must be pumped by intrinsic contraction of lymphatic muscle, since investigators have not considered that cyclical dilation of venules could compress adjacent lymphatic microvessels. Because lymphatic vessels are sensitive to stretch, we hypothesized that venomotion not only can cause extrinsic pumping of lymph in nearby lymphatic vessels, but also can stimulate intrinsic contractions. Bat wing venules have pronounced venomotion and are in close proximity to lymphatic microvessels, and can be studied noninvasively without the confounding effects of anesthesia, surgical trauma, or contrast agents. Therefore, the interaction between venules and their paired lymphatic vessels in unanesthetized Pallid bats (n = 8) was evaluated by recording the diameters of both vessels. Four sets of observations suggested that lymphatic and venous contractions were partially coupled. First, venous dilation and contraction produced a significant change in lymphatic microvascular cross-sectional area. Second, lymphatic microvascular contractions were immediately preceded by a change in venular diameter. Third, venular and lymphatic vessel contraction frequencies were positively correlated (r = 0.75). Fourth, time delays between peak venular systole and onset of lymphatic microvascular contraction were negatively correlated with venomotion magnitude (r = -0.55) and velocity (r = -0.64). In a separate experiment, inhibiting venomotion resulted in a 54.3 +/- 20.0% (n = 8) decrease in lymphatic contraction frequency. Furthermore, 85.7% (n = 56) of lymphatic vessels switch sides and lie adjacent to arterioles when venules were too small to exhibit venomotion. These results are consistent with both extrinsic pumping of lymph and stretch-induced lymphatic contraction and imply that intrinsic and extrinsic pumping can be coupled.


Assuntos
Quirópteros/fisiologia , Vasos Linfáticos/fisiologia , Vênulas/fisiologia , Asas de Animais/irrigação sanguínea , Asas de Animais/fisiologia , Animais , Arteríolas/fisiologia , Edema/fisiopatologia , Sistema Linfático/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
12.
Am J Physiol Heart Circ Physiol ; 294(5): H2144-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18326809

RESUMO

To return lymph to the great veins of the neck, it must be actively pumped against a pressure gradient. Mean lymph flow in a portion of a lymphatic network has been characterized by an empirical relationship (P(in) - P(out) = -P(p) + R(L)Q(L)), where P(in) - P(out) is the axial pressure gradient and Q(L) is mean lymph flow. R(L) and P(p) are empirical parameters characterizing the effective lymphatic resistance and pump pressure, respectively. The relation of these global empirical parameters to the properties of lymphangions, the segments of a lymphatic vessel bounded by valves, has been problematic. Lymphangions have a structure like blood vessels but cyclically contract like cardiac ventricles; they are characterized by a contraction frequency (f) and the slopes of the end-diastolic pressure-volume relationship [minimum value of resulting elastance (E(min))] and end-systolic pressure-volume relationship [maximum value of resulting elastance (E(max))]. Poiseuille's law provides a first-order approximation relating the pressure-flow relationship to the fundamental properties of a blood vessel. No analogous formula exists for a pumping lymphangion. We therefore derived an algebraic formula predicting lymphangion flow from fundamental physical principles and known lymphangion properties. Quantitative analysis revealed that lymph inertia and resistance to lymph flow are negligible and that lymphangions act like a series of interconnected ventricles. For a single lymphangion, P(p) = P(in) (E(max) - E(min))/E(min) and R(L) = E(max)/f. The formula was tested against a validated, realistic mathematical model of a lymphangion and found to be accurate. Predicted flows were within the range of flows measured in vitro. The present work therefore provides a general solution that makes it possible to relate fundamental lymphangion properties to lymphatic system function.


Assuntos
Linfa/fisiologia , Vasos Linfáticos/fisiologia , Modelos Biológicos , Contração Muscular , Músculo Liso/fisiologia , Animais , Bovinos , Elasticidade , Vasos Linfáticos/anatomia & histologia , Perfusão , Pressão , Reprodutibilidade dos Testes , Reologia , Viscosidade
13.
Am J Physiol Heart Circ Physiol ; 293(2): H1183-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17468331

RESUMO

The lymphatic system returns interstitial fluid to the central venous circulation, in part, by the cyclical contraction of a series of "lymphangion pumps" in a lymphatic vessel. The dynamics of individual lymphangions have been well characterized in vitro; their frequencies and strengths of contraction are sensitive to both preload and afterload. However, lymphangion interaction within a lymphatic vessel has been poorly characterized because it is difficult to experimentally alter properties of individual lymphangions and because the afterload of one lymphangion is coupled to the preload of another. To determine the effects of lymphangion interaction on lymph flow, we adapted an existing mathematical model of a lymphangion (characterizing lymphangion contractility, lymph viscosity, and inertia) to create a new lymphatic vessel model consisting of several lymphangions in series. The lymphatic vessel model was validated with focused experiments on bovine mesenteric lymphatic vessels in vitro. The model was then used to predict changes in lymph flow with different time delays between onset of contraction of adjacent lymphangions (coordinated case) and with different relative lymphangion contraction frequencies (noncoordinated case). Coordination of contraction had little impact on mean flow. Furthermore, orthograde and retrograde propagations of contractile waves had similar effects on flow. Model results explain why neither retrograde propagation of contractile waves nor the lack of electrical continuity between lymphangions adversely impacts flow. Because lymphangion coordination minimally affects mean flow in lymphatic vessels, lymphangions have flexibility to independently adapt to local conditions.


Assuntos
Linfa/fisiologia , Vasos Linfáticos/fisiologia , Contração Muscular , Músculo Liso/fisiologia , Adaptação Fisiológica , Animais , Bovinos , Simulação por Computador , Elasticidade , Técnicas In Vitro , Linfa/química , Modelos Biológicos , Perfusão , Pressão , Reprodutibilidade dos Testes , Reologia , Fatores de Tempo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA